Optimal Control of a Tuberculosis Model with Chemoprophylaxis Treatment

Article Preview

Abstract:

Seeking to reduce the latent and infectious tuberculosis groups, we use the control strategy which incorporates chemoprophylaxis treatment for latent infection. The optimal control is characterized in terms of the optimality system, and we characterize the optimal level of the control strategy by using Pontryagin's Maximum Principle. Furthermore, we give the solved numerically for several scenarios.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

595-599

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Narain, M.C. Raviglione, A. Kochi. HIV-associated tuberculosis in developing countries: epidemiology and strategies for prevention, Tubercle and Lung Disease. 73(1992)311-321.

DOI: 10.1016/0962-8479(92)90033-g

Google Scholar

[2] WHO, Global Tuberculosis Control, Surveillance, Planning, Financing: WHO Report 2008, Switzerland, (2008).

Google Scholar

[3] S.M. Blower, P.M. Small, P.C. Howell PC, Control strategies for tuberculosis epidemics: New models for old problems, Science. 273(1996) 497-500.

DOI: 10.1126/science.273.5274.497

Google Scholar

[4] E. Ziv, C.L. Daley, S.M. Blower, Early therapy for latent tuberculosis infection, Am. J. Epidemiol. 153(2001)381-385.

DOI: 10.1093/aje/153.4.381

Google Scholar

[5] Y.L. Yang, J.Q. Li, Z.E. Ma,et al., Global stability of two models with incomplete treatment for tuberculosis, Chaos, Solitons and Fractals. 43(2010) 79-85.

DOI: 10.1016/j.chaos.2010.09.002

Google Scholar

[6] J. Tchuenche, S. Khamis, F. Agusto, et al., Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination, Acta Biotheor, (2010).

DOI: 10.1007/s10441-010-9095-8

Google Scholar

[7] W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, (1975).

Google Scholar

[8] L.S. Pontryagin, V.G. Boltyanskii, R. Gamkrelidze, et al., The Mathematical Theory of Optimal Process, Gordon and Breach, New York, (1986).

Google Scholar

[9] S.M. Blower, A.R. McLean AR, T.C. Porco, et al., The intrinsic transmission dynamics of tuberculosis epidemics, Nature Med. 1(1995) 815-821.

DOI: 10.1038/nm0895-815

Google Scholar

[10] C. Bhunu, W. Garira, Tuberculosis transmission model with chemoprophylaxis and treatment, Bulletin of Mathematical Biology. 70(2008) 1163-1191.

DOI: 10.1007/s11538-008-9295-4

Google Scholar

[11] P. Rodriguesa, M.G.M. Gomes, C. Rebelo, Drug resistance in tuberculosis-a reinfection model, Theor. Pop. Biol., 71(2007) 196-212.

Google Scholar

[12] WHO. Global Tuberculosis Control: WHO Report 2011, Switzerland, (2011).

Google Scholar

[13] C. Ted, M. Megan, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nature medicine, 10(2004) 1117-1121.

DOI: 10.1038/nm1110

Google Scholar

[14] M.A. Sanchez, S.M. Blower, Uncertainty and sensitivity analysis of the basic reproductive rate: Tuberculosis as an example, Am. J. Epidemiol. 145(1997) 1127-1137.

DOI: 10.1093/oxfordjournals.aje.a009076

Google Scholar