Sequence Analysis of the Cas2 Gene in Riemerella anatipestifer

Article Preview

Abstract:

Objective: By analyzing the Cas2gene of Riemerella anatipestifer (RA), the aim was to acquire more useful information as a guide of further study. Methods: Using bioinformatics method, sequence analysis of RA Cas2 gene was performed with some databases and software, including homology search, sequence alignment, phylogenetic tree analysis, composition analysis and physicochemical property analysis. Results: Homology search suggested that Cas2 protein sequence of R. anatipestifer showed high similarity to those of strains within Bergeyella zoohelcum and Capnocytophaga canimorsus, consistent with the result of multiple sequence alignment and phylogenetic tree analysis. The rare codon analysis revealed that there was no rare codon string in RA Cas2 gene. Conclusion: Cas2 gene of R. anatipestifer was evolutionally closely related to those strains of Bergeyella zoohelcum and Capnocytophaga canimorsus, and can be over-expressed in E.coli without considering the impact of rare codons on translation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

570-576

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Jansen, J. D. A. Embden, W. Gaastra, and L. M. Schouls: Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, vol. 43 (2002), pp.1565-1575.

DOI: 10.1046/j.1365-2958.2002.02839.x

Google Scholar

[2] K. S. Makarova, L. Aravind, N. V. Grishin, I. B. Rogozin, and E. V. Koonin: A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic acids research, vol. 30 (2002), pp.482-496.

DOI: 10.1093/nar/30.2.482

Google Scholar

[3] J. S. Godde and A. Bickerton: The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. Journal of molecular evolution, vol. 62 (2006), pp.718-729.

DOI: 10.1007/s00239-005-0223-z

Google Scholar

[4] D. H. Haft, J. Selengut, E. F. Mongodin, and K. E. Nelson: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology, vol. 1 (2005), p. e60.

DOI: 10.1371/journal.pcbi.0010060

Google Scholar

[5] K. S. Makarova, N. V. Grishin, S. A. Shabalina, Y. I. Wolf, and E. V. Koonin: A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, vol. 1 (2006).

DOI: 10.1186/1745-6150-1-7

Google Scholar

[6] H. Deveau, J. E. Garneau, and S. Moineau: CRISPR/Cas system and its role in phage-bacteria interactions. Annual review of microbiology, vol. 64 (2010), pp.475-493.

DOI: 10.1146/annurev.micro.112408.134123

Google Scholar

[7] K. S. Makarova, D. H. Haft, R. Barrangou, S. J. J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F. J. M. Mojica, Y. I. Wolf, and A. F. Yakunin: Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, vol. 9 (2011).

DOI: 10.1038/nrmicro2577

Google Scholar

[8] N. Beloglazova, G. Brown, M. D. Zimmerman, M. Proudfoot, K. S. Makarova, M. Kudritska, S. Kochinyan, S. Wang, M. Chruszcz, and W. Minor: A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. Journal of Biological Chemistry, vol. 283 (2008).

DOI: 10.1074/jbc.m803225200

Google Scholar

[9] D. Han and G. Krauss: Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS letters, vol. 583 (2009), pp.771-776.

DOI: 10.1016/j.febslet.2009.01.024

Google Scholar

[10] Y. M. Saif, A. M. Fadly, and J. R. Glisson, Diseases of Poultry: Blackwell Pub (2008).

Google Scholar

[11] T. Sandhu and M. L. Leister: Serotypes of Pasteurella, anatipestifer isolates from poultry in different countries. Avian Pathology, vol. 20 (1991), pp.233-239.

DOI: 10.1080/03079459108418760

Google Scholar

[12] H. Loh, T. Teo, and H. C. Tan: Serotypes of'Pasteurella'anatipestifer isolates from ducks in Singapore: A proposal of new serotypes. Avian Pathology, vol. 21 (1992), pp.453-459.

DOI: 10.1080/03079459208418863

Google Scholar

[13] M. Ryll and K. Hinz: Exclusion of strain 670/89 as type strain for serovar 20 of Riemerella anatipestifer. Berliner und Münchener tierärztliche Wochenschrift, vol. 113 (2000), p.65.

Google Scholar

[14] P. Pathanasophon, T. Sawada, and T. Tanticharoenyos: New serotypes of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol, vol. 24 (Mar 1995), pp.195-9.

DOI: 10.1080/03079459508419059

Google Scholar

[15] P. Pathanasophon, P. Phuektes, T. Tanticharoenyos, W. Narongsak, and T. Sawada: A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol, vol. 31 (Jun 2002), pp.267-70.

DOI: 10.1080/03079450220136576

Google Scholar

[16] C. AnChun, W. MingShu, C. XiaoYue, Z. DeKang, H. Cheng, L. Fei, Z. Yi, G. YuFei, L. ZhaoYu, and F. PengFei: Epidemiology and New Serotypes of Riemerella anatipestifer Isolated from Ducks in China and Studies on Their Pathogenic Characteristics. Chin. J. Vet. Sci., vol. 23 (2003).

Google Scholar

[17] W. Xiaojia, Z. DeKang, W. MingShu, C. AnChun, J. RenYong, Z. Yi, C. Zhengli, L. QiHui, L. Fei, W. Yi, and C. XiaoYue: Complete Genome Sequence of Riemerella anatipestifer Reference Strain. Journal of Bacteriology, vol. 194 (2012), pp.3270-3271.

DOI: 10.1637/9333-917210-digest.1

Google Scholar

[18] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, vol. 25 (1997), pp.3389-3402.

DOI: 10.1093/nar/25.17.3389

Google Scholar

[19] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, vol. 25 (Dec 15 1997), pp.4876-4882.

DOI: 10.1093/nar/25.24.4876

Google Scholar

[20] K. Tamura, J. Dudley, M. Nei, and S. Kumar: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4. 0. Molecular Biology and Evolution, vol. 24 (2007), pp.1596-1599.

DOI: 10.1093/molbev/msm092

Google Scholar

[21] P. Schenk, S. Baumann, R. Mattes, and H. H. Steinbiss: Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. BioTechniques, vol. 19 (1995), pp.196-200.

Google Scholar

[22] C. P. Carstens and A. Waesche: Codon bias-adjusted BL21 derivatives for protein expression. Strategies Newsletters (Stratagene), vol. 12 (1999), pp.49-51.

Google Scholar

[23] R. B. Russell: Genomics, proteomics and bioinformatics: all in the same boat. Genome Biology, vol. 3 (2002), p.4034.

Google Scholar