[1]
R. Jansen, J. D. A. Embden, W. Gaastra, and L. M. Schouls: Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, vol. 43 (2002), pp.1565-1575.
DOI: 10.1046/j.1365-2958.2002.02839.x
Google Scholar
[2]
K. S. Makarova, L. Aravind, N. V. Grishin, I. B. Rogozin, and E. V. Koonin: A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic acids research, vol. 30 (2002), pp.482-496.
DOI: 10.1093/nar/30.2.482
Google Scholar
[3]
J. S. Godde and A. Bickerton: The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. Journal of molecular evolution, vol. 62 (2006), pp.718-729.
DOI: 10.1007/s00239-005-0223-z
Google Scholar
[4]
D. H. Haft, J. Selengut, E. F. Mongodin, and K. E. Nelson: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology, vol. 1 (2005), p. e60.
DOI: 10.1371/journal.pcbi.0010060
Google Scholar
[5]
K. S. Makarova, N. V. Grishin, S. A. Shabalina, Y. I. Wolf, and E. V. Koonin: A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, vol. 1 (2006).
DOI: 10.1186/1745-6150-1-7
Google Scholar
[6]
H. Deveau, J. E. Garneau, and S. Moineau: CRISPR/Cas system and its role in phage-bacteria interactions. Annual review of microbiology, vol. 64 (2010), pp.475-493.
DOI: 10.1146/annurev.micro.112408.134123
Google Scholar
[7]
K. S. Makarova, D. H. Haft, R. Barrangou, S. J. J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F. J. M. Mojica, Y. I. Wolf, and A. F. Yakunin: Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, vol. 9 (2011).
DOI: 10.1038/nrmicro2577
Google Scholar
[8]
N. Beloglazova, G. Brown, M. D. Zimmerman, M. Proudfoot, K. S. Makarova, M. Kudritska, S. Kochinyan, S. Wang, M. Chruszcz, and W. Minor: A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. Journal of Biological Chemistry, vol. 283 (2008).
DOI: 10.1074/jbc.m803225200
Google Scholar
[9]
D. Han and G. Krauss: Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS letters, vol. 583 (2009), pp.771-776.
DOI: 10.1016/j.febslet.2009.01.024
Google Scholar
[10]
Y. M. Saif, A. M. Fadly, and J. R. Glisson, Diseases of Poultry: Blackwell Pub (2008).
Google Scholar
[11]
T. Sandhu and M. L. Leister: Serotypes of Pasteurella, anatipestifer isolates from poultry in different countries. Avian Pathology, vol. 20 (1991), pp.233-239.
DOI: 10.1080/03079459108418760
Google Scholar
[12]
H. Loh, T. Teo, and H. C. Tan: Serotypes of'Pasteurella'anatipestifer isolates from ducks in Singapore: A proposal of new serotypes. Avian Pathology, vol. 21 (1992), pp.453-459.
DOI: 10.1080/03079459208418863
Google Scholar
[13]
M. Ryll and K. Hinz: Exclusion of strain 670/89 as type strain for serovar 20 of Riemerella anatipestifer. Berliner und Münchener tierärztliche Wochenschrift, vol. 113 (2000), p.65.
Google Scholar
[14]
P. Pathanasophon, T. Sawada, and T. Tanticharoenyos: New serotypes of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol, vol. 24 (Mar 1995), pp.195-9.
DOI: 10.1080/03079459508419059
Google Scholar
[15]
P. Pathanasophon, P. Phuektes, T. Tanticharoenyos, W. Narongsak, and T. Sawada: A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol, vol. 31 (Jun 2002), pp.267-70.
DOI: 10.1080/03079450220136576
Google Scholar
[16]
C. AnChun, W. MingShu, C. XiaoYue, Z. DeKang, H. Cheng, L. Fei, Z. Yi, G. YuFei, L. ZhaoYu, and F. PengFei: Epidemiology and New Serotypes of Riemerella anatipestifer Isolated from Ducks in China and Studies on Their Pathogenic Characteristics. Chin. J. Vet. Sci., vol. 23 (2003).
Google Scholar
[17]
W. Xiaojia, Z. DeKang, W. MingShu, C. AnChun, J. RenYong, Z. Yi, C. Zhengli, L. QiHui, L. Fei, W. Yi, and C. XiaoYue: Complete Genome Sequence of Riemerella anatipestifer Reference Strain. Journal of Bacteriology, vol. 194 (2012), pp.3270-3271.
DOI: 10.1637/9333-917210-digest.1
Google Scholar
[18]
S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, vol. 25 (1997), pp.3389-3402.
DOI: 10.1093/nar/25.17.3389
Google Scholar
[19]
J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, vol. 25 (Dec 15 1997), pp.4876-4882.
DOI: 10.1093/nar/25.24.4876
Google Scholar
[20]
K. Tamura, J. Dudley, M. Nei, and S. Kumar: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4. 0. Molecular Biology and Evolution, vol. 24 (2007), pp.1596-1599.
DOI: 10.1093/molbev/msm092
Google Scholar
[21]
P. Schenk, S. Baumann, R. Mattes, and H. H. Steinbiss: Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. BioTechniques, vol. 19 (1995), pp.196-200.
Google Scholar
[22]
C. P. Carstens and A. Waesche: Codon bias-adjusted BL21 derivatives for protein expression. Strategies Newsletters (Stratagene), vol. 12 (1999), pp.49-51.
Google Scholar
[23]
R. B. Russell: Genomics, proteomics and bioinformatics: all in the same boat. Genome Biology, vol. 3 (2002), p.4034.
Google Scholar