[1]
Jan G Korvink and Oliver Paul, MEMS:A Practical Guide to Design, Analysis and Applications, Springer, (2006).
Google Scholar
[2]
A. R. Jha, MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications, CRC Press, (2008).
Google Scholar
[3]
Mohamed Gad-el-Hak, The MEMS Handbook: MEMS Applications, CRC Press, (2006).
Google Scholar
[4]
Reza Ghodssi and Pinyen Lin, MEMS Materials and Processes Handbook, Springer, (2011).
Google Scholar
[5]
Nava Setter, Electroceramic-based MEMS: Fabrication-Technology and Applications, Springer, (2009).
Google Scholar
[6]
Allyson L. Hartzell, Mark G. da Silva and Herbert R. Shea, MEMS Reliability, Springer, (2010).
Google Scholar
[7]
Evgeni Gusev, Eric Garfunkel and Arthur Dideikin, Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators, Springer, (2010).
DOI: 10.1007/978-90-481-3807-4
Google Scholar
[8]
Priyanka Aggarwal, Zainab Syed, Aboelmagd Noureldin and Naser El-Sheimy, MEMS-Based Integrated Navigation, Artech House, (2010).
Google Scholar
[9]
Andrew McWilliams, MEMS: Biosensors and Nanosensors, BCC Research, (2011).
Google Scholar
[10]
Volker Kempe, Inertial MEMS: Principles and Practice, Cambridge, (2011).
Google Scholar
[11]
Edward B. Magrab, Vibrations of Elastic Systems:With Applications to MEMS and NEMS, Springer, (2012).
Google Scholar
[12]
Edmond Cretu, Biomedical Applications of MEMS Devices, April 6, 2010 http: /www. ece. ubc. ca/~leos/pdf/e331/notes/MEMS. pdf.
Google Scholar
[13]
Muhammad Waseem Ashraf, Shahzadi Tayyaba and Nitin Afzulpurkar, Micro Electro- mechanical Systems(MEMS)Based Microfluidic Devices for Biomedical Applications, International Journal of Molecular Sciences, 12, 2011, 3648-3704.
DOI: 10.3390/ijms12063648
Google Scholar
[14]
A. S. Sezen, S. Sivaramakrishnan, S. Hur, R. Rajamani, W. Robbins and B. J. Nelson, Passive Wireless MEMS Microphones for Biomedical Applications, Journal of Biomechanical Engineering, 127, 2005, 1030-1034.
DOI: 10.1115/1.2049330
Google Scholar
[15]
M. Mehregany, X. Fu and L. Chen, Silicon Carbide Micro/Nano Systems for Harsh Environment and Demanding Applications, In Proceedings of the NSTI-Nanotech Conference 2006, 3, 471-474.
Google Scholar
[16]
D. Gao, M. Wijesundara, C. Carraro, R. Howe and R. Maboudian, Recent Progress Toward a Manufacturable Polycrystalline SiC Surface Micromachining Technology, IEEE Sensors Journal, 4(4), 2004, 441-448.
DOI: 10.1109/jsen.2004.828859
Google Scholar
[17]
D. Doppalapudi, R. Mlcak, J. Chan, H. Tuller, J. Abell, W. Li and T. Moustakas, Sensors based on SiCAlN MEMS, Electrochem. Soc. Proc., 6, 2004, 287-299.
Google Scholar
[18]
S. Dakshinamurthy, N.R. Quick and A. Kar, Temperature-dependent optical properties of silicon carbide for wireless temperature sensors, J. Physics D: Applied Physics, 2007, 353-360.
DOI: 10.1088/0022-3727/40/2/010
Google Scholar
[19]
C. Wu, C. Zorman and M. Mehregany, Fabrication and Testing of Bulk Micromachined Silicon Carbide Piezoresistive Pressure Sensors for High Temperature Applications, IEEE Sensors Journal, 6(2), 2006, 316-324.
DOI: 10.1109/jsen.2006.870145
Google Scholar
[20]
P. Nieva, N. McGruer and G. Adams, Design and characterization of a micromachined Fabry–Perot vibration sensor for high-temperature applications, J. Micromechanics and Micro- engineering, 16, 2006, 2618-2631.
DOI: 10.1088/0960-1317/16/12/015
Google Scholar
[21]
M. Suster, W. Ko and D. Young, An Optically Powered Wireless Telemetry Module for High-Temperature MEMS Sensing and Communication, J. Microelectromechanical Systems, 13(3), 2004, 536-541.
DOI: 10.1109/jmems.2004.828706
Google Scholar