[1]
Y. NO, K. Yaesawa. The improvement of Oxidation-resistance of Ti-Al Alloy by Electric Discharge Ni-Cr-Al-Y Coating Vol. 17(2003), P. 158-163.
Google Scholar
[2]
A.H. Wang, X.L. Zhang, X.F. Zhang, and et al: Ni-based alloy/submicron WS2 Self-lubricating Composite Coating Synthesized by Nd: YAG laser cladding Vol. 475(2008), P. 312−318.
DOI: 10.1016/j.msea.2007.04.087
Google Scholar
[3]
C.T. Liu, E.P. George, P.J. Maziasz and et al: Recent Advances in B2 Iron Al alloys: deformation, fracture and alloy design Vol. 25(1998), P. 84-89.
DOI: 10.1016/s0921-5093(98)00921-6
Google Scholar
[4]
P.J. Maziasz, D.J. Alexander, J.L. Wright: High Strength Ductility and Impact Toughness at Room Temperature in Hot-extrude Fe-Al Alloys Vol. 5(1997), P. 547-562.
DOI: 10.1016/s0966-9795(97)00033-2
Google Scholar
[5]
Y.J. Zhang, Z.C. Bao: Study of Fe-Al alloy/Al2O3 Materials Vol. 44(2000), P. 39-41.
Google Scholar
[6]
L.Y. Yang, C.C. Li, S.R. Wang, Y.J. Wang, Z.M. Liu: Design of High Temperature Self-lubricating Bearing Vol. 3(2000), P. 9-10.
Google Scholar
[7]
M.M. Shi: Solid Self-lubricating Materials Vol. 14(2000), P. 24-27.
Google Scholar
[8]
S.Z. Li, X.X. Jiang, F.C. Yin: The Development of Self-lubricating Materials Vol. 3(1989), P. 481-486.
Google Scholar
[9]
D. S Xiong: Lubrication Behavior of Ni-Cr-based Alloys Containing MoS2 at High Temperature Vol. 251(2001), P. 1094−1099.
DOI: 10.1016/s0043-1648(01)00803-1
Google Scholar
[10]
Y. Wang: Study on S, Ni Alloy Vol. 16(1996), P. 289-297.
Google Scholar
[11]
S.Q. Niu, J.P. Zhu, J.L. OuYang: Study of Several High Temperature Self-lubricant Materials Vol. 15(1995), P. 324-332 (in Chinese).
Google Scholar
[12]
J.B. Wang, J. Lu, Q.J. Xue: Study on Tri-blogical Properties of SiC-Ni-Co-Mo-PbO High Temperature Self-lubricating Cermet Materials Vol. 17 (2007), P. 25-31(in Chinese).
Google Scholar
[13]
J.S. Han, J.B. Wang, S.W. Zhang: The Friction of Self-lubricant Fe-Mo-CaF2 at High Temperature Vol. 23 (2003), P. 306-310 (in Chinese).
Google Scholar
[14]
D.S. Xiong, Z.S. Li, X.X. Jiang: Study on Fe-Re Alloy Vol. 7(1997), P. 81-87.
Google Scholar
[15]
X.L. Wang, X.L. Ying, L. Gao: The Development and Trends of Solid Self-lubricant Materials Vol. 12(2009), P. 6-8.
Google Scholar
[16]
Y.J. Wang, Z.M. Liu: Study on Ti-C/ Fe-Cr-W-Mo-V Bearing Vol. 5(2005), P. 20-23.
Google Scholar
[17]
X.L. Miao: New Fe-based Self-lubricant Materials Vol. 4(2010), P. 28-29.
Google Scholar
[18]
J.Z. Liu: The properties of Ni-Nb-Fe-Se alloy Vol. 10(2000), P. 160-165.
Google Scholar
[19]
Y. NO, K. Yaesawa: Improvement of Oxidation-resistance of Ti-Al Alloy by Electric Discharge Ni-Cr-Al-Y Coating Vol. 17(2003), P. 158-163.
Google Scholar
[20]
R.T. Zheng, Y.G. Zhang, C.Q. Chen: Microcrack Nucleation and Effect on the Plastic Deformation of FL γ-Ti-Al Alloys Vol. 39(2004), P. 1721-1725.
DOI: 10.1023/b:jmsc.0000016176.15217.51
Google Scholar
[21]
D.B. Lee, M.H. Kim, C.W. Yang and et al: The oxidation of TiB2 Particle-reinforced Ti-Al metallic Composites Vol. 56(2001), P. 215-218.
Google Scholar
[22]
J.G. Lin, C.E. Wen, Y.G. Zhang and et al: Diffusion Ledge Mechanism of Massive γ Transformation in Quenched Ti-Al Alloys Vol. 18(2002), P. 927-929.
Google Scholar
[23]
J.J. Lu, Q.J. Xue: Comparison on the Microstructure and Mechanical Strength of Ni-based Alloy with and without 3wt. % CeF3 Addition Vol. 12(1998), P. 23-28.
DOI: 10.1016/s0921-5093(98)00850-8
Google Scholar
[24]
J. Lee, W. Gao: Hodgson M Surface Study of Ti3Al and Ti3Al-11Nb, TiAl and TiAl-2Cr by X-RAY Photoelectron Spectroscopy Vol. 19(2003), P. 8-9.
Google Scholar
[25]
L.Y. Yang, Y.J. Wang, Z.M. Liu: The Friction of Ti—A1 Alloy at High Temperature Vol. 19(2008), P. 601-605.
Google Scholar
[26]
C.C. Zhang, L. Wang, Z.W. Zhao: Study of New Al-based Bearing Materials Vol. 29(2005), P. 38-42.
Google Scholar
[27]
R.H. Zhu, X.P. Zhang, Z.P. Niu: The Preparation of Graphite-Al-based Self-lubricant Materials Vol. 37(2012), P. 73-78.
Google Scholar
[28]
S.T. Zhang, B.G. Gu and et al: Friction and Wear Behavior of Laser Cladding Ni/h-BN Self-lubricating Composite Coating Vol. 491(2008), P. 47−54.
DOI: 10.1016/j.msea.2007.12.015
Google Scholar
[29]
X.L. Kong, Y.B. Liu, Y. L: Powder Metal Self-lubricant Materials Vol. 19 (2009), P. 86−92.
Google Scholar
[30]
Y.B. Jiang, R.C. Wang, C.Q. Peng: The Effects of Temperature for the Properties of BN/Ni(Cr) Self-lubricant Materials Vol. 43(2007), P. 93-99.
Google Scholar
[31]
S.Z. Li, X.X. Jiang, F.C. Yin: Study of Ni-Cu-Re Self-lubricant at High Temperature Vol. 3(1999), P. 481-486 (in Chinese).
Google Scholar
[32]
G.M. Zhou: Study of Solid Self-lubricant Bearing Vol. 23(1998), P. 63-68 (in Chinese).
Google Scholar
[33]
T.S. Li: The Development of Gradient Self-lubricating Bearing Materials Vol. 2(1998), P. 69-77 (in Chinese).
Google Scholar
[34]
Q. Wei, B.Y. Zhou, S.K. Chen: The Friction of Gradient Self-lubricating Bearing Materials Vol. 15(2009), P. 81-84.
Google Scholar
[35]
New Masayuki: The Development of Functionally Graded Composite Society Vol. 13(1987), P. 257-264.
Google Scholar
[36]
Y.H. Xia, Z.R. Jin, J.G. Cheng: The Use of Gradient Self-lubricating Bearing Materials in Engineering Materials Vol. 25(2001), P. 9-11(in Chinese).
Google Scholar
[37]
Z.R. Jin, J.G. Cheng, Y.H. Xia: Study of Gradient Self-lubricant Bearing Vol. 37(2001), P. 81-84 (in Chinese).
Google Scholar
[38]
L.Y. Yang: The Preparation and Study of TiAl alloy Vol. 24(2008), P. 51-64 (in Chinese).
Google Scholar
[39]
R. Ma, S.R. Wang: Analysis of AZ31 Mg alloy Vol. 25(2011), P. 344-348 (in Chinese).
Google Scholar
[40]
Y.Z. Liu, X.Q. Jiang, F. Mu: The Development of AZ31 Mg Alloy Vol. 12(2008), P. 59-63.
Google Scholar