A New Method for Quantitatively Evaluating Defects of the Green Body in Injection Moulding Based on X-Ray Digital Radiography

Article Preview

Abstract:

Attempts have been made to develop a gray value-matching detection method for quantitative evaluation of defects and density of green parts in metal injection moulding, based on the analysis of X-ray digital radiography images. The results show that the range of gray values should be in about 1.4% when the dimensional accuracy is required within 0.3%, and voids are present where fluctuation of the gray value is larger than 10%. The quantitative evaluation of voids, powder content and density distribution through the gray value-matching can respectively predict severity of voids, shrinkage, and deformation in the sintering stage. Furthermore, the ability to detect defects and particle density distribution of this method allows for the development of an inference system to predict the optimal parameters.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

2093-2098

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. German, A. Bose: Injection Moulding of Metals and Ceramics (Princeton University Press, Princeton 1997).

Google Scholar

[2] P.K.D.V. Yarlagadda: Journal of Materials Processing Technology Vol.130 (2002), p.315

Google Scholar

[3] F. Yin, H.J. Mao, L. Hua, W. Guo, and M.S. Shu: Materials & Design Vol.32 (2011), p.1844

Google Scholar

[4] A. Kamoun, M. Jaziri, M. Chaabouni: Chemometrics and Intelligent Laboratory Systems Vol.96 (2009), p.117

Google Scholar

[5] B. Farshi, S. Gheshmi, E. Miandoabchi: Materials & Design Vol.32 (2011), p.414

Google Scholar

[6] M. Altan: Materials & Design Vol.31 (2010), p.599

Google Scholar

[7] R. Heldele, S. Rath, L. Merz, R. Butzbach, M. Hagelstein, and J. Hauselt: Nuclear Instruments and Methods in Physics Research Section B Vol.246 (2006), p.211

DOI: 10.1016/j.nimb.2005.12.030

Google Scholar

[8] Y.P. Han, Y. Han, R.H. Li, and L.M. Wang: Nuclear Instruments and Methods in Physics Research Section A Vol.604 (2009), p.760

Google Scholar

[9] I.G. Kazantsev, I. Lemahieu, G.I. Salov, and R. Denys: Signal Processing Vol.82 (2002), p.791

DOI: 10.1016/s0165-1684(02)00158-5

Google Scholar

[10] L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, and C. Josserond: Nuclear Instruments and Methods in Physics Research Section B (2003), Vol.200 p.273

DOI: 10.1016/s0168-583x(02)01689-0

Google Scholar

[11] E.N. Landis, D.T. Keane: Materials Characterization Vol.61 (2010), p.1305

Google Scholar

[12] Y.L. Zhao, L.M. Wang, Y. Han: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Vol.604 (2009), p.568

DOI: 10.1016/j.nima.2009.01.029

Google Scholar

[13] V. Busignies, B. Leclerc, P. Porion, and P. Tchoreloff: European Journal of Pharmaceutics and Biopharmaceutics Vol.64 (2006), p.38

DOI: 10.1016/j.ejpb.2006.02.007

Google Scholar

[14] T. Barriere, J.C. Gelin, B. Liu: Journal of Materials Processing Technology Vol.125 (2002), p.518

Google Scholar