Effect of NiO Nanoparticles on Magnetic Polymer Electrolyte for Dye-Sensitized Solar Cells

Article Preview

Abstract:

A magnetic polymer electrolyte using agarose as polymer matrix, NMP as solvent and NiO nanoparticles as modifier was investigated and employed in the dye-sensitized solar cell (DSSC) in this paper. The influence of NiO nanoparticles content on magnetic polymer electrolyte was characterized by SEM and ionic conductivity test. The photovoltaic properties of the corresponding DSSCs were studied by photovoltaic performance tests. The results showed that the surface morphology of the polymer electrolyte with 1.0wt% NiO nanoparticles was smooth and this magnetic polymer electrolyte showed the maximum conductivity (2.43×10-3S•cm-1). The optimal photoelectric efficiency of 1.63% was achieved at the NiO nanoparticles content of 1.0wt%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-101

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan, M. Grätzel: Nature Vol. 353(1991), p.737.

Google Scholar

[2] M. K. Nazeeruddin, A. Kay, I. Rodicio, et al: Chem. Soc. Vol. 115(1993), p.6382.

Google Scholar

[3] Yella A, Lee H W, Tsao H N, et al: Science Vol. 334(2011), p.629.

Google Scholar

[4] W. J. Wang, Y. Yang, X. Y. Guo , et al: Chemistry Vol. 74(2011), p.144.

Google Scholar

[5] R. A. G. Kumara, S. Kancko, M. Okuya, et al: Langmuir Vol. 18(2002), p.10493.

Google Scholar

[6] Q. B. Meng, K. Takahashi, X. T. Zhang, et al: Langmuir Vol. 19(2003), p.3572.

Google Scholar

[7] U. Bach, D. Lupo, P. Comte, et al: Nature Vol. 395(1998), p.583.

Google Scholar

[8] A. F. Nogueria, J. R. Durrant, M. A. Depaoli, et al: Adv. Mater. Vol. 13(2001), p.826.

Google Scholar

[9] P. Wang, S. M. Zakeeruddin, M. J. Grätzel: Fluorine Chem. Vol. 125(2004), p.1241.

Google Scholar

[10] H. X. Wang, H. Li, B. F. Xue, et al: J. Am. Chem. Soc. Vol. 127(2005), p.6394.

Google Scholar

[11] B. F. Xue, H. X. Wang, Y. S. Hu, et al: Photochem Photobiol Sci. Vol. (2004), p.918.

Google Scholar

[12] M. R. Yang, T. H. Teng , S. H. Wu:J. Power Sources. Vol. 159(2006), p.307.

Google Scholar

[13] Y. Yang, C. H. Zhou , S Xu , et al: Nanotechnology Vol. 20(2009), p.105204.

Google Scholar

[14] Y. T. Shi, X. D. Sun, D. Weng, et al: World SCI-Tech R&D Vol. 28(2006), p.45.

Google Scholar

[15] W. L. Qiu, Q. H. Yang, X. H. Ma, et al: Chinese Journal of Power Sources Vol. 28(2004), p.440.

Google Scholar

[16] H. Y. Du, H. Cheng, Y. Yang: Electrochemistry Vol. 10(2004), p.215.

Google Scholar

[17] H. W. Han, W. Liu , J. Zhang , et al: Adv. Funct. Mater. Vol. 15(2005), p. (1940).

Google Scholar

[18] S. A. Khan, G. L. Baker , S. Colson: Chem. Mater. Vol. 6(1994), p.2359.

Google Scholar

[19] F. Croce, G. B. Appetecchi, L. Persi, et al: Nature Vol. 394(1998), p.456.

Google Scholar

[20] B. J. Ash, L. S. Schadler, R. W. Siegel: Mater. Lett. Vol. 55(2002), p.83.

Google Scholar

[21] B. K. Choi, Y. W. Kim, K. H. Shin: J. Power Sources. Vol. 68(1997), p.357.

Google Scholar