Growth and Photoluminescence of β-SiC Nanowires on Porous Silicon Array

Article Preview

Abstract:

Nonaligned and curly β-SiC nanowires (nw-SiC) were grown on porous silicon array (PSA) by a chemical vapor deposition method with nickel as the catalyst. The morphology, structure and the composition of the nw-SiC/PSA and the SiC-SiO2 core-shell fibers which is the semi-product were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Based on the experimental results a possible growth mechanism of nw-SiC was explained. Two broad photoluminescence peaks located around ~409 and ~494 nm were observed in nw-SiC/PSA in the PL measurement when utilizing 300 nm ultraviolet fluorescent light excited at room temperature. The excellent luminescent performances are ascribed to the quantum confinement effects in nw-SiC. The optical merits of nw-SiC/PSA made it a promising material in the fields of ultraviolet-blue emitting devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-15

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. G. Wright, A. B. Horsfall, and K. Vassilevski: Mater. Today Vol. 11(2008), p.16.

Google Scholar

[2] Z. Pan, H. -L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. -S. Lee, N. -B. Wong, S. -T. Lee, and S. Xie: Adv. Mater. Vol. 12(2000), p.1186.

Google Scholar

[3] Z. Li, J. Zhang, A. Meng, and J. Guo: J. Phys. Chem. B Vol. 110(2006), p.22382.

Google Scholar

[4] W. M. Zhou , Y. J. Wu, E. S. -W. Kong, F. Zhu, Z. Y. Hou, and Y. F. Zhang: Appl. Surf. Sci. Vol. 253 (2006), p. (2056).

Google Scholar

[5] L. Zhang, W. Yang, H. Jin, Z. Zheng, Z. Xie, H. Miao, and L. An: Appl. Phys. Lett. Vol. 89 (2006), 143101.

Google Scholar

[6] T. H. Yang, C. H. Chen, A. Chatterjee, H. Y. Li, J. T. Lo, C. T. Wu, K. H. Chen, and L. C. Chen: Chem. Phys. Lett. Vol. 379 (2003), p.155.

Google Scholar

[7] S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, J. Zhou, X. G. Zheng, H. T. Xu, J. Chen, and J. C. She: Appl. Phys. Lett. Vol. 89(2006), 023118.

Google Scholar

[8] Y. F. Zhang, M. Nishitani-Gamo, C. Xiao, and T. Ando: J. Appl. Phys. Vol. 91(2002), 6066.

Google Scholar

[9] J. H. Park, W. -J. Kim, D. J. Kim, W. -S. Ryu, and J. Y. Park: Thin Solid Films 515 (2007), p.5519.

Google Scholar

[10] G. D. Wei, W. P. Qin, R. Kim, J. B. Sun, P. F. Zhu, G. F. Wang, L. L. Wang, D. S. Zhang, and K. Z. Zheng: Chem. Phys. Lett. Vol. 461 (2008), p.242.

Google Scholar

[11] R. B. Wu, Y. Pan, G. Y. Yang, M. X. Gao, L. L. Wu, J. J. Chen, R. Zhai, and J. Lin: J. Phys. Chem. C Vol. 111 (2007), p.6233.

Google Scholar

[12] H. J. Xu and X. J. Li: Opt. Express Vol. 16(2008), p.2933.

Google Scholar

[13] X. J. Li and W. F. Jiang: Nanotechnology Vol. 18(2007), 065203.

Google Scholar

[14] H. J. Xu, Y. F. Chan, L. Su, D. Y. Li, and X. M. Sun: J. Appl. Phys. Vol. 108(2010), 114301.

Google Scholar

[15] C. B. Han, C. He, and X. J. Li: Adv. Mater. Vol. 23(2011), p.4811.

Google Scholar

[16] C. He, C. B. Han, Y. R. Xu, and X. J. Li: J. Appl. Phys. Vol. 110(2011), 094316.

Google Scholar

[17] H. J. Xu and X. J. Li: Appl. Phys. Lett. Vol. 91(2007), 201912.

Google Scholar

[18] H. J. Xu and X. J. Li, J. Phys.: Condens. Matter Vol. 19(2007), 056003.

Google Scholar

[19] F. A. Harraz, T. Sakka, and Y. H. Ogata: Phys. Stat. Sol. Vol. 197(2003), p.51.

Google Scholar

[20] J. Kanungo, C. Pramanik, S. Bandopadhyay, U. Gangopadhyay, L. Das, H. Saha, and R. T. T. Gettens: Semicond. Sci. Technol. Vol. 21(2006), p.964.

DOI: 10.1088/0268-1242/21/7/023

Google Scholar

[21] Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou, X. Liu, and J. Zhu: Appl. Phys. Lett. Vol. 75(1999), 507.

Google Scholar

[22] K. Senthil and K. Yong: Mater. Chem. Phys. Vol. 112(2008), p.88.

Google Scholar

[23] W. Gruner, S. Stole, and K. Wetzig: Int. J. Ref. Metals Hard Mater. Vol. 18(2000), p.137.

Google Scholar

[24] H. K. Seong, H. J. Choi, S. K. Lee, J. I. Lee, and D. J. Choi: Appl. Phys. Lett. Vol. 85(2004), 1256.

Google Scholar

[25] Z. Chen, Y. X. Wang, Y. M. Zou, J. W. Wang, Y. Li, and H. J. Zhang: Appl. Phys. Lett. Vol. 89(2006), 141913.

Google Scholar

[26] X. J. Wang, J. F. Tian, L. H. Bao, C. Hui, T. Z. Yang, C. M. Shen, H. J. Gao, F. Liu, and N. S. Xu: J. Appl. Phys. Vol. 102(2007), 014309.

Google Scholar

[27] X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and Paul K. Chu: Phys. Rev. Lett. Vol. 94(2005), 026102.

Google Scholar

[28] G. C. Xi, Y. Y. Peng, S. M. Wan, T. W. Li, W. C. Yu, and Y. T. Qian: J. Phys. Chem. B Vol. 108(2004), p.20102.

Google Scholar