Synthesis of Double-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition Method in a Reactor with Varied Diameter

Article Preview

Abstract:

Double-walled carbon nanotubes (DWCNTs) have been synthesized by a floating catalytic chemical vapor deposition method (FC-CVD) in diameter-varied reactor with xylene as carbon sources, ferrocene as catalyst precursor, and sulfur as additive. The as-grown products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Raman spectrometer. The results show that DWCNTs with a high graphite degree is centimeter-scale in length, and the inner diameter varies in the range of 1.5-1.7 nm. The effect of reactor diameter on the structure and morphology of the products was also investigated and compared. It is believed that the diameter-varied reactor may become a feasible route to the mass and continuous production of DWCNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56-58.

Google Scholar

[2] H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162-163.

Google Scholar

[3] S. Iijima, T. Ichihashi, Nature 363 (1993) 603-605.

Google Scholar

[4] D. Ugarte, Nature 359 (1992) 707-709.

Google Scholar

[5] A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature 388 (1997) 451-454.

DOI: 10.1038/41284

Google Scholar

[6] Y.J. Jung, B.Q. Wei, J. Nugent, P.M. Ajayan, carbon 39 (2001) 2195-2201.

Google Scholar

[7] R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 348 (2001) 187-193.

Google Scholar

[8] Y.K. Kwon, D. Tomanek, Phys. Rev. B 58 (1998) 16001-16004.

Google Scholar

[9] V. Neves, E. Heister, S. Costa, C. Tilmaciu, E. Flahaut, B. Soula, H.M. Coley, J. McFadden, S.R.P. Silva, Nanotechnology 23 (2012).

DOI: 10.1088/0957-4484/23/36/365102

Google Scholar

[10] G.W. Wang, J.L. Chen, Y. Tian, Y. Jin, Y.D. Li, Catal. Today 183 (2012) 26-33.

Google Scholar

[11] M. Berd, P. Puech, A. Righi, A. Benfdila, M. Monthioux, Small 8 (2012) 2045-(2052).

DOI: 10.1002/smll.201102410

Google Scholar

[12] Y.F. Fu, S. Chen, J. Bielecki, A. Matic, T. Wang, L.L. Ye, J.H. Liu, Mater. Lett. 72 (2012) 78-80.

Google Scholar

[13] A. Jedrzejewska, R.J. Kalenczuk, E. Mijowska, Mater. Sci. -Poland 29 (2011) 292-298.

Google Scholar

[14] H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Science 296 (2002) 884-886.

Google Scholar

[15] J.Q. Wei, B. Jiang, D.H. Wu, B.Q. Wei, J. Phys. Chem. B 108 (2004) 8844-8847.

Google Scholar

[16] Z.P. Zhou, L.J. Ci, L. Song, X.Q. Yan, D.F. Liu, H.J. Yuan, Y. Gao, J.X. Wang, L.F. Liu, W.Y. Zhou, G. Wang, S.S. Xie, carbon 41 (2003) 2607-2611.

DOI: 10.1016/s0008-6223(03)00336-1

Google Scholar

[17] Y.G. Wang, Z.S. Qu, J. Liu, J. Tang, Laser Phys. 21 (2011) 1689-1693.

Google Scholar

[18] Y.J. You, M.Z. Qu, G.M. Zhou, H.Q. Lin, Mater. Res. Bull. 46 (2011) 1987-(1990).

Google Scholar

[19] O. Jost, A.A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein, M. Knupfer, M. Reibold, H.D. Bauer, L. Dunsch, M.S. Golden, J. Fink, Appl. Phys. Lett. 75 (1999) 2217-2219.

DOI: 10.1063/1.124969

Google Scholar

[20] A.M. Rao, J. Chen, E. Richter, U. Schlecht, P.C. Eklund, R.C. Haddon, U.D. Venkateswaran, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 86 (2001) 3895-3898.

DOI: 10.1103/physrevlett.86.3895

Google Scholar

[21] I.W. Chiang, B.E. Brinson, A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley, R.H. Hauge, J. Phys. Chem. B 105 (2001) 8297-8301.

DOI: 10.1021/jp0114891

Google Scholar