Equivalent Circuit Model for the Electrochemical Reaction Process within the Solid Oxide Fuel Cell Composite Electrode

Article Preview

Abstract:

As the fabrication technology of the composite electrode becomes sophisticated, the understanding of the detailed knowledge of the microstructure’s effect on the electrochemical process is essential for the commercializing of the solid oxide fuel cell (SOFC). In this paper, an equivalent circuit for the SOFC structure is proposed to clearly describe the electronic electric current transfer process, ionic electric current transfer process and the charge transfer process at the electrochemical reaction interface between electronic and ionic conducting materials. And types of the boundary condition setting constraints for the developing of the multi-physics coupling numerical model of SOFC are obtained basing on the electrochemical kinetic analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

266-272

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chen, L. Lu, J. Li, Z. Yu, W. Kong, H. Zhu, J Power Sources, Vol. 196 (2011), p.3178.

Google Scholar

[2] F. Zhao, A.V. Virkar, J Power Sources, Vol. 141 (2005), p.79.

Google Scholar

[3] J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Nat Mater, Vol. 5 (2006), p.541.

DOI: 10.1038/nmat1668

Google Scholar

[4] J. Golbert, C.S. Adjiman, N.P. Brandon, Ind Eng Chem Res, Vol. 47 (2008), pp.7693-7699.

DOI: 10.1021/ie800065w

Google Scholar

[5] A.V. Virkar, J. Chen, C.W. Tanner, J.W. Kim, Solid State Ionics, Vol. 131 (2000) , p.189.

Google Scholar

[6] R.P. Ohayre, S. W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, Inc, (2006).

Google Scholar

[7] S.X. Liu, C. Song, Z.J. Lin, J Power Sources, Vol. 183 (2008), p.214.

Google Scholar

[8] H.Y. Zhu, R.J. Kee, J Power Sources, Vol. 117 (2003), p.61.

Google Scholar

[9] H.Y. Zhu, R.J. Kee, J Electrochem Soc, Vol. 155 (2008), p. B715.

Google Scholar

[10] Y.X. Shi, N.S. Cai, C. Li, J Power Sources, Vol. 164 (2007), p.639.

Google Scholar

[11] D.H. Jeon, J.H. Nam, C.J. Kim, J Electrochem Soc, Vol. 153 (2006), p. A406.

Google Scholar

[12] D. Chen, W. Bi, W. Kong, Z. Lin, J Power Sources, Vol. 195 (2010), p.6598.

Google Scholar

[13] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, H. Mahaudom, J Power Sources, Vol. 161 (2006), p.308.

DOI: 10.1016/j.jpowsour.2006.03.080

Google Scholar