[1]
Chang/Hudson. Methods and models for predicting fatigue crack growth under random loading, ASTM STP, 748(1981).
DOI: 10.1520/stp748-eb
Google Scholar
[2]
Christensen, R.H. Fatigue crack, fatigue damage and their detection, J. Metal Fatigue, McGraw-Hill, New York(1959).
Google Scholar
[3]
Hudson, C.M. and Hardrath, H.F. Investigation of the effects of variable amplitude loadings on fatigue crack propagation patterns, TND-1903, NASA(1963).
Google Scholar
[4]
Newman, Jr., J.C. Prediction of fatigue crack growth under variable amplitude and spectrum loading using a closure model, Design of fatigue and fracture resistant structures, ASTM STP 761: 255-277(1982).
DOI: 10.1520/stp28863s
Google Scholar
[5]
Newman, Jr., J.C. Prediction of crack growth under variable amplitude loading in thin-sheet 2024-T3 Aluminium Alloys, Engineering Against Fatigue, University of Sheffield, NASA Langley Research Center, Hampton, Virginia, USA(1997).
Google Scholar
[6]
Narayanaswami, R. Fatigue crack growth in selected aluminium alloys under variable amplitude loading, In: Proceedings of the VII summer school of fracture mechanics, Pokrzywna, pp.317-333(2001).
Google Scholar
[7]
Lang. A model for fatigue crack growth- Part: modeling, J. Fatigue Fracture of Engineering Materials and Structures, 23(7): 603-617(2000).
DOI: 10.1046/j.1460-2695.2000.00298.x
Google Scholar
[8]
Liu Z.F., Gu L. X., Xu Z.Y., A novel mechanics model for fatigue crack growth under constant amplitude loading, The 11th International Symposium on Structure Engineering, V1: 886-890 (2010).
Google Scholar
[9]
Gu L. X., Liu Z.F., Xu Z.Y. Threshold stress intensity factor in inertial effect coefficient model. Advanced Materials Research, New and Advanced Materials, 197-198: 1452-1459(2011).
DOI: 10.4028/www.scientific.net/amr.197-198.1452
Google Scholar
[10]
Gu L. X., Liu Z.F., Xu Z.Y. A key parameter in a novel fatigue crack growth model. Advanced Materials Research, Advances in Structures, 163-167: 3186-3192(2011).
DOI: 10.4028/www.scientific.net/amr.163-167.3186
Google Scholar
[11]
Gu L. X., Liu Z.F., Xu Z.Y. Analysis of the parameter C in inertial effect coefficient model. Advanced Materials Research, Advances in Civil Engineering and Architecture, 243-249: 5458-5464(2011).
DOI: 10.4028/www.scientific.net/amr.243-249.5458
Google Scholar
[12]
Chang J.B., Stolpestad J.H. Improved Methods For Predicting Spectrum Loading Effects-Phase I Report, Volume II Test Data(1979).
Google Scholar
[13]
Xu D.Q. Analysis and research of basic assumptions of new fatigue crack propagation model[D]. China, Guangzhou, South China University of Technology(2009).
Google Scholar
[14]
Shinozuka M., Vaicaitis R. Improved Methods For Predicting Spectrum Loading Effects-Phase I Report, Volume I-Results and Discussion(1979).
Google Scholar