[1]
J. Kennedy and R. Eberhart: A new optimizer using particle swarm theory, Proceedings of the IEEE Sixth International Symposium on Micro machine and Human Science, pp.39-43. ISBN: 0-7803-2676-8, (1995).
DOI: 10.1109/mhs.1995.494215
Google Scholar
[2]
J. M. Hereford and M. A. Siebold: Bio-inspired search strategies for robot swarms, Swarm Robotics From Biology to Robotics, Ester Martinez Martin (Ed. ), ISBN: 978-953-307-075-9, InTech, (2010).
DOI: 10.5772/8600
Google Scholar
[3]
M. Masár and J. Zelenka: Modification of PSO algorithm for the purpose of space exploration, In SAMI 2012 : proceedings. - Piscataway : IEEE, pp.223-226. ISBN 978-1-4577-0195-5, (2012).
DOI: 10.1109/sami.2012.6208962
Google Scholar
[4]
M. Dorigo and T. Stutzle: Ant Colony Optimization, MIT Press. ISBN 0-262-04219-3, (2004).
Google Scholar
[5]
V. Kalivarapu and E. Winer: Implementation of Digital Pheromones in Particle Swarm Optimization for Constrained Optimization Problems, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, (2008).
DOI: 10.2514/6.2008-1974
Google Scholar
[6]
L. Shang, Ch. Kai, H. Guan and A. Liang: A Map-Coverage Algorithm Basing on Particle Swarm Optimization, Scalcom-embeddedcom, pp.87-91, 2009 International Conference on Scalable Computing and Communications; Eighth International Conference on Embedded Computing, ISBN 978-0-7695-3825-9 (2009).
DOI: 10.1109/embeddedcom-scalcom.2009.26
Google Scholar
[7]
C. W. Reynolds: Flocks, Herds, and Schools: A DistributedBehavioral Model, Computer Graphics, 21(4), pp.25-34, ISBN: 0-89791-227-6 , (1987).
Google Scholar
[8]
C. R. Ward, F. Gobet, and G. Kendall: Evolving collective behavior in an artificial ecology. Artificial Life, Vol. 7, No. 2, pp.191-209, (2001).
DOI: 10.1162/106454601753139005
Google Scholar