Field Emission Model of CNT Based Ionization Gas Sensor

Article Preview

Abstract:

A new model to study the gas detection mechanism of carbon nanotube (CNT) based ionization gas sensor has been developed. The model incorporates the effect of electron field emission due to the presence of CNT. The model is then embedded in the standard Particle-In-Cell / Monte-Carlo-Collision (PIC-MCC) codes. This enhanced PIC-MCC codes serve as a tool to optimize CNT based ionization gas sensor. The functionality of the new model is validated by running simulations of DC discharges in argon and comparing the results with published experimental and simulated works. From the simulation, one order of magnitude decrease in the breakdown voltages and three orders of magnitude faster response time was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

Google Scholar

[2] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Tan, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett. 75 (1999) 3129-3131.

DOI: 10.1063/1.125253

Google Scholar

[3] Q. H. Wang, M. Yan, R. P. H. Chang, Flat panel display prototype using gated carbon nanotube field emitters, Appl. Phys. Lett., 78 (2001) 1294-1296.

DOI: 10.1063/1.1351847

Google Scholar

[4] J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. I. Cho, K. S. Nam, Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays, Appl. Phys. Lett., 78 (2001) 901-903.

DOI: 10.1063/1.1335846

Google Scholar

[5] Y. Saito, and S. Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, 38 (2000) 169-182.

DOI: 10.1016/s0008-6223(99)00139-6

Google Scholar

[6] J. M. Bonard, J. P. Salvetat, T Stockli, L. Forro, A. Chatelain, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism, Appl. Phys. A, 69 (1999) 245-254.

DOI: 10.1007/s003390050998

Google Scholar

[7] A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, Miniaturized Gas Ionization Sensors using Carbon Nanotubes, Nature, 424 (2003) 171-174.

DOI: 10.1038/nature01777

Google Scholar

[8] Z. Hou, H. Liu, X. Wei, J. Wu, W. Zhau, Y. Zhang, D. Xu, B. Cai, MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing, Sens. and Actuators B, 127 (2007) 637-648.

DOI: 10.1016/j.snb.2007.05.026

Google Scholar

[9] Z. Hou, J. Wu, W. Zhou, X. Wei, D. Xu, Y. Zhang, and B. Cai, A MEMS-Based Ionization Gas Sensor Using Carbon Nanotubes, IEEE Trans. Elect. Dev., 54 (2007) 1545-1548.

DOI: 10.1109/ted.2007.896370

Google Scholar

[10] H. Guohua, W. Lili, P. Min, C. Yuquan, L. Ting, Z. Xiaobin, Carbon nanotube gas sensor based on corona discharge, Chin J Anal Chem, 34, 12 (2006) 1813-1816.

Google Scholar

[11] C. K. Birdsall, Particle-in-Cell Charged Particle Simulations Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC, IEEE Trans. on Plasma Sci., 19 (1991) 65-85.

DOI: 10.1109/27.106800

Google Scholar

[12] Verboncoeur, J.P., M.V. Alves, V. Vahedi, and C.K. Birdsall, Simultaneous Potential and Circuit Solution for 1D Bounded Plasma Particle Simulation Codes, J. Comp. Physics, 104 (1993) 321-328.

DOI: 10.1006/jcph.1993.1034

Google Scholar

[13] H. C. Kim, F. Iza, S. S. Yang, M. Radmilovic-Radjenovic, and J. K. Lee, Particle and fluid simulations of low-temperature plasma discharge: benchmarks and kinetic effects, J. Phys. D: Appl. Phys. 38 (2005) R283-R301.

DOI: 10.1088/0022-3727/38/19/r01

Google Scholar

[14] J. M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Nouri, N. Weiss, Carbon nanotube films as electron field emitters, Carbon, 40 (2002) 1715-1728.

DOI: 10.1016/s0008-6223(02)00011-8

Google Scholar

[15] R. C. Smith, L. D. Filip, J. D. Carey, and S. R. P. Silva, Calculation of field enhancement factor and screening effects in carbon nanotube arrays, IEEE 20th IVNC, (2007) 171-172.

DOI: 10.1109/ivnc.2007.4480983

Google Scholar

[16] J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, Giant field enhancement at carbon nanotube tips induced by multistage effect, Appl. Phys. Lett. 87 (2005) 053110, 1-3.

DOI: 10.1063/1.2008363

Google Scholar

[17] Y. Liu, S. Fan, Field emission properties of carbon nanotubes grown on silicon nanowire arrays, Solid State Comm., 133 (2005) 131-134.

DOI: 10.1016/j.ssc.2004.09.058

Google Scholar

[18] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, S. Jin, In situ-grown carbon nanotube array with excellent field emission characteristics, Appl. Phys. Lett., 76 (2000) 3813-3815.

DOI: 10.1063/1.126790

Google Scholar

[19] Y. P. Raizer, Gas Discharge Physics, Springer, (1991).

Google Scholar

[20] M. R. Radjenovic, Z. L. Petrovic, and B. Radjenovic, Modelling of breakdown behavior by PIC/MCC code with improved secondary emission models, IOP Publishing, Jour. Of Phys.: Conference series 71 (2007) 012007.

DOI: 10.1088/1742-6596/71/1/012007

Google Scholar

[21] T. Ito, T. Izaki, and K. Terashima, Application of Microscale Plasma to Material Processing, Thin Solid Films 386 (2001) 300-304.

DOI: 10.1016/s0040-6090(00)01670-9

Google Scholar