Atomic Force Microscope (AFM) Studies of TiO2 Nanocoated Glass Surface via Sol-Gel Coating

Article Preview

Abstract:

Atomic Force Microscope (AFM) has been used to study the surface properties of TiO2 nanocoated glass surface at atomic level. TiO2 nanocoated glass surface was prepared by synthesis of titanium butoxide (TTiB) as precursor and was then deposited on glass surface via spin-coating technique. The AFM details studied of TiO2 nanocoated glass surface revealed that the nanoparticle was uniformly distributed throughout glass surface with growth of TiO2 nanostructures below 12 nm via AFM surface morphology and topography characterization, respectively. It was also showed that the cross-sectional view analysis is 5.22 nm and surface roughness, Ra, of coating is 0.858 nm, respectively. The TiO2 nanostructures were successfully seen grew at 0.2 M of sol-gel solution. It confirmed that for the coating application at nanometer scale level on the glass-based material equipment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-134

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Songwang and L. Gao, Low-temperature Synthesis of Crystalline TiO2 Nanorods: Mass Production Assisted by Surfactant, Chem. Lett. 34 (2005) 964-965.

DOI: 10.1246/cl.2005.964

Google Scholar

[2] S. Liu and K. Huang, Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate, Sol. Energy Mater. Sol. Cells 85 (2005) 125-131.

DOI: 10.1016/j.solmat.2004.04.011

Google Scholar

[3] M. Anderson, L. Oesterlund, S. Ljungstroem and A. Palmqvist, Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol, J. Phys. Chem. B 106 (2002).

DOI: 10.1021/jp025715y

Google Scholar

[4] Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacohen and A. Gedanken, Sonochemical synthesis of titania whiskers andnanotubes, Chem. Commun. (2001) 2616.

Google Scholar

[5] T.S. Senthil, N. Muthukumarasamy, S. Agilan, M. Thambidurai and R. Balasundaraprabhu, Preparation and characterization of nanocrystalline TiO2 thin films, Mater. Sci. and Eng. 174 (2010) 102-104.

DOI: 10.1016/j.mseb.2010.04.009

Google Scholar

[6] K. S. Yeung and Y. W. Lam, A simple chemical vapour deposition method for depositing thin TiO2 films, Thin Solid Films 109 (1983) 169-178.

DOI: 10.1016/0040-6090(83)90136-0

Google Scholar

[7] C. Burda, X. Chen, R. Narayanan and M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes , Chem. Rev. 105 (2005) 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[8] J.H. Rouse and G.S. Ferguson, Stepwise Formation of Ultrathin Films of a Titanium (Hydr)Oxide by Polyelectrolyte-Assisted Adsorption, Adv. Mater. 14 (2002) 151-154.

DOI: 10.1002/1521-4095(20020116)14:2<151::aid-adma151>3.0.co;2-n

Google Scholar

[9] U. Vijayalakshmi and S. Rajeswari, Synthesis and characterization of sol–gel derived glass-ceramic and its corrosion protection on 316L SS, J. Sol-gel Sci. Technol. 43 (2007) 251-258.

DOI: 10.1007/s10971-007-1576-0

Google Scholar

[10] Y. Lei, L.D. Zhang and J.C. Fan, Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3, Chem. Phys. Lett. 338 (2001) 231-236.

DOI: 10.1016/s0009-2614(01)00263-9

Google Scholar

[11] A.P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 271 (1996) 933-937.

DOI: 10.1126/science.271.5251.933

Google Scholar

[12] R. Booker and E. Boysen, The Hitchhiker's Guide to Nanotechnology, in nanotechnology for dummies, Indiana: Wiley Publishing (2005) 11-18.

Google Scholar

[13] A. P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem. 100 (1996) 13266-13239.

Google Scholar

[14] X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, and C. Zhao, Doped Semiconductor material, J. Nanosci. Nanotechnol. 5 (2005) 1408.

DOI: 10.1166/jnn.2005.310

Google Scholar

[15] M.F. Achoi, M.N. Asiah, M. Rusop, and S. Abdullah, Electrical properties of multilayer TiO2 nanocoated glass with Au metal contact, Journal of Electron Devices 12 (2010) 782-786.

Google Scholar

[16] Y. Zhiyong, E. Mielczarski, J. Mielczarski, D. Laub, Ph. Buffat, U. Klehm, P. Albers, K. Lee, A. Kulik, L. Kiwi-Minsker, A. Renken and J. Kiwi, Preparation, stabilization and characterization of TiO2 on thin polyethylene films (LDPE): Photocatalytic applications,: Water Research 41(4)(2007).

DOI: 10.1016/j.watres.2007.03.036

Google Scholar

[17] M.F. b Achoi, M.N. Asiah, M. Rusop, and S. Abdullah, The effect of growth temperature on the surface properties of TiO2 nanostructures grown on TiO2 templates, Trans. Mater. Research Soc. Jpn, 36 (2011) 273-279.

DOI: 10.14723/tmrsj.36.273

Google Scholar

[18] M.F. Achoi, M.N. Asiah, M. Rusop, and S. Abdullah, Nanoindentation testing for nanomultilayared spin coated TiO2/B2O3-SiO2, Jurnal Teknologi (Sciences & Engineering), Article in press (2012).

Google Scholar