[1]
C.C. Liu, F.X. Jiang, M.Y. Huang, B.Y. Lu, R.R. Yue, J.K. Xu, Free-Standing PEDOT-PSS/Ca3Co4O9 Composite Films as Novel Thermoelectric Materials, Journal of Electronic Materials 40 (2011) 948-952.
DOI: 10.1007/s11664-010-1465-0
Google Scholar
[2]
H.D. Manfred Scholdt, Johannes Lang, Andre Gall, Alexander Colsmann, Uli Lemmer, Jan D. Koenig, Markus Winkler, Harald Boettner, Organic Semiconductors for Thermoelectric Applications, Journal Of Electronic Materials 39 (2010) 1589-1592.
DOI: 10.1007/s11664-010-1271-8
Google Scholar
[3]
S.E. Venkatasubramanian R, Colpitts T, O'Quinn B, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.
DOI: 10.1038/35098012
Google Scholar
[4]
J.S. B. Zhang, H.E. Katz, F. Fang and R. l. Opila, Promising Thermoelectric Properties of Commercial PEDOT: PSS Materials and Their Bi2Te3 Powder Composites, Applied Materials and Interfaces 2 (2010) 3170-3178.
DOI: 10.1021/am100654p
Google Scholar
[5]
M. -S.J.K. -C. Chang, Y. -C. Peng, The thermoelectric performance of Poly(3, 4-ethylenedioxythiphene)/Poly(4-styrenesulfonate) thin films, Journal Of Electronic Materials 38 (2009) 1182-1188.
DOI: 10.1007/s11664-009-0821-4
Google Scholar
[6]
G.N.G. Dietrich R. T Zahn, Mihaela Gorgoi, The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission, Chemical Physics 325 (2006) 99-112.
DOI: 10.1016/j.chemphys.2006.02.003
Google Scholar
[7]
E.R. Nicoleta Nicoara, Jose M. Gomez-Rodriguez, Jose A. Martin-Gago, Javier Mendez, Scanning tunneling and photoemission spectroscopies at the PTCDA/Au (111) interface, Organic Electronics 7 (2006) 287-294.
DOI: 10.1016/j.orgel.2006.03.010
Google Scholar
[8]
B.L. Congcong Liu, Jun Yan, Jingkun Xu, Ruirui Yue, Zhaojin Zhu, Shuyun Zhou, Xiujie Hu, Zhuo Zhang, Ping Chen, Highly conducting free-standing poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances., Synthetic Metals 160 (2010).
DOI: 10.1016/j.synthmet.2010.09.031
Google Scholar
[9]
W.H. S.S. Kushvaha, Y.C. Samarendra, P. Singh, S.J. O'Shea, Thermoelectric measurements using different tips in atomic force microscopy, Journal Of Applied Physics 109 (2011) 084341.
DOI: 10.1063/1.3581073
Google Scholar
[10]
S.N. Hiroyasu Sato, Polymer laser photochemistry, ablation, reconstruction and polymerization, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2 (2001) 139-152.
DOI: 10.1016/s1389-5567(01)00015-6
Google Scholar
[11]
C.Z. J. Wuesten, Electron transport in pristine and alkali metal doped perylene-3, 4, 9, 10-tetracarboxylicdianhydride (PTCDA) thin films, Phys. Rev. B 74 (2006) 125205-125212.
DOI: 10.1103/physrevb.74.125205
Google Scholar
[12]
A.S. Mihaela Rusu, V. Bulacovschi, G.G. Rusu, Mihaela Bucescu, G.I. Rusu, Temperature deoendence of the electrical conductivity and Seebeck coefficient of new poly(ester-syloxane) urethane elastomers in thin films, Thin Solid Films 326 (1998).
DOI: 10.1016/s0040-6090(98)00570-7
Google Scholar
[13]
J.Y. Xing Niu, Shuzhong Wang, Experimental study on low-temperature waste heat thermoelectric generator. , Journal Of Power Sources 188 (2009) 621-626.
DOI: 10.1016/j.jpowsour.2008.12.067
Google Scholar
[14]
L.I. M. Tengelin-Nilsson, J. Kanski, Photoemission and low-energy electron diffraction studies of 3, 4, 9, 10-perylene tetracarboxyic dianhydride layers on Si(111): H, Surface Sciences 464 (2000) 265-271.
DOI: 10.1016/s0039-6028(00)00708-1
Google Scholar
[15]
F.S. Anca Stanculescu, Marcela Socol, Oana Grigorescu, Electrical transport in crystalline perylene derivatives films for electronic devices, Solid State Sciences 10 (2008) 1762-1767.
DOI: 10.1016/j.solidstatesciences.2008.03.023
Google Scholar