[1]
A.M.K. Dagamseh, B. Vet, F.D. Tichelaar, P. Sutta, M. Zeman, ZnO: Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cell, Thin Solid Films Thin Solid Films 516 (2008) 7844-7850.
DOI: 10.1016/j.tsf.2008.05.009
Google Scholar
[2]
Ahmad Umar, S. H Kim, J. H Kim, A. Al-Hajry, Yoon Bong Hahn, Temperature-dependent non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process, Journal of Alloys and Compounds 463 (2008).
DOI: 10.1016/j.jallcom.2007.09.065
Google Scholar
[3]
L. Miao, S. Tanemura, Y. Ieda, M. Tanemura, Y. Hayashi, H.Y. Yang, S.P. Lau, B.K. Tay, Y. G Cao, Synthesis, morphology and random laser action of ZnO nanostructures, Surface Science 601 (2007) 2660-2663.
DOI: 10.1016/j.susc.2006.12.011
Google Scholar
[4]
Uma Choppali, Brian P. Gorman, Structural and optical properties of nanocrystalline ZnO thin films synthesized by the citrate precursor route, Journal of Luminescence 128 (2008) 1641-1648.
DOI: 10.1016/j.jlumin.2008.03.013
Google Scholar
[5]
Young Sung Kim, Weon Pil Tai, Su Jeong Shu, Effect of preheating temperature on structural and optical properties of ZnO thin film by sol-gel process, Thin Solid Films 491 (2005) 153-160.
DOI: 10.1016/j.tsf.2005.06.013
Google Scholar
[6]
A. K Srivastava, Direct evidence for electron beam irradiation-induced phenomena in nanowired ZnO thin films, Materials Letters 62 (2008) 4296-4298.
DOI: 10.1016/j.matlet.2008.07.009
Google Scholar
[7]
M. Bouderbala, S. Hamzaoui, B. Amrani, Ali H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films, Physica B: Condensed Matter 403 (2008) 3326-3330.
DOI: 10.1016/j.physb.2008.04.045
Google Scholar
[8]
K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Solar Energy Materials and Solar Cells 73 (2002) 51-58.
DOI: 10.1016/s0927-0248(01)00110-6
Google Scholar
[9]
N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers, Adv. Mater. 14 (2002) 418-421.
DOI: 10.1002/1521-4095(20020318)14:6<418::aid-adma418>3.0.co;2-k
Google Scholar
[10]
A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn, Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders, Journal of Crystal Growth 277 (2005) 471-478.
DOI: 10.1016/j.jcrysgro.2005.02.006
Google Scholar
[11]
A. Umar, H.W. Ra, J.P. Jeong, E. -K. Suh, Y.B. Hahn, Synthesis of ZnO nanowires on Si substrate by thermal evaporation method without catalyst: Structural and optical properties, Korean Journal of Chemical Engineering 23 (2006) 499-504.
DOI: 10.1007/bf02706756
Google Scholar
[12]
A. Umar, B. -K. Kim, J. -J. Kim, Y.B. Hahn, Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation, Nanotechnology 18 (2007) 175606.
DOI: 10.1088/0957-4484/18/17/175606
Google Scholar
[13]
A. Umar, E. -K. Suh, Y.B. Hahn, Non-catalytic growth of high aspect-ratio ZnO nanowires by thermal evaporation, Solid State Communications 139 (2006) 447-451.
DOI: 10.1016/j.ssc.2006.07.014
Google Scholar
[14]
A. Umar, S. Lee, Y.S. Lee, K.S. Nahm, Y.B. Hahn, Star-shaped ZnO nanostructures on silicon by cyclic feeding chemical vapor deposition, Journal of Crystal Growth 277 (2005) 479-484.
DOI: 10.1016/j.jcrysgro.2005.02.007
Google Scholar
[15]
A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn, Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties, Journal of Crystal Growth 282 (2005) 131-136.
DOI: 10.1016/j.jcrysgro.2005.04.095
Google Scholar
[16]
A. Umar, Y.B. Hahn, Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation, Appl. Phys. Lett. 88 (2006) 173120.
DOI: 10.1063/1.2200472
Google Scholar
[17]
B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, H. Koinuma, Formation of highly aligned ZnO tubes on sapphire (0001) substrates, Appl. Phys. Lett. 84 (2004) 4098.
DOI: 10.1063/1.1753061
Google Scholar
[18]
W.L. Hughes, Z.L. Wang, Nanobelts as nanocantilevers: Nanoscale science and design, Appl. Phys. Lett. 82 (2003) 2886.
Google Scholar
[19]
W.L. Hughes, Z.L. Wang, Formation of Piezoelectric Single-Crystal Nanorings and Nanobows, J. Am. Chem. Soc. 126 (2004) 6703-6709.
DOI: 10.1021/ja049266m
Google Scholar
[20]
P.X. Gao, Z.L. Wang, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, J. Appl. Phys. 97 (2005) 044304.
Google Scholar
[21]
X.Y. Kong, Z.L. Wang, Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals, Appl. Phys. Lett. 84 (2004) 975-977.
DOI: 10.1063/1.1646453
Google Scholar
[22]
A. Umar, S. Lee, Y.H. Im, Y.B. Hahn, Flower-shaped ZnO nanostructures obtained by cyclic feeding chemical vapour deposition: structural and optical properties, Nanotechnology 16 (2005) 2462-2468.
DOI: 10.1088/0957-4484/16/10/079
Google Scholar
[23]
A. Umar, Y.B. Hahn, ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties, Nanotechnology 17 (2006) 2174-2180.
DOI: 10.1088/0957-4484/17/9/016
Google Scholar
[24]
K.H. Yoon, J.W. Choi, D.H. Lee, Characteristics of ZnO thin films deposited onto Al/Si substrates by r. f. magnetron sputtering, Thin Solid Films 302 (1997) 116-121.
DOI: 10.1016/s0040-6090(96)09568-5
Google Scholar
[25]
H. Kim, J.S. Horwitz, S.B. Qadri, D.B. Chrisey, Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition, Thin Solid Films 420-421 (2002) 107-111.
DOI: 10.1016/s0040-6090(02)00658-2
Google Scholar
[26]
J. Hu, Roy G. Gordon, Textured Al-doped ZnO Thin Films from Atmospheric Pressure Chemical-Vapor Deposition, J. Appl. Phys. 71 (1992) 880-890.
DOI: 10.1063/1.351309
Google Scholar
[27]
B.J. Lokhande, P.S. Patil, M.D. Uplane, Deposition of highly oriented ZnO films by spray pyrolysis and their structural, optical and electrical characterization, Mater. Lett. (2002) 573.
DOI: 10.1016/s0167-577x(02)00832-7
Google Scholar
[28]
S. Major, A. Banerjee, K.L. Chopra, Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis, Thin Solid Films 108 (1983) 333-340.
DOI: 10.1016/0040-6090(83)90082-2
Google Scholar
[29]
T. Tsuchiya, T. Emoto, T. Sei, Preparation and properties of transparent conductive thin films by the sol-gel process, Journal of Non-Crystalline Solids 178 (1994) 327-332.
DOI: 10.1016/0022-3093(94)90302-6
Google Scholar
[30]
J.H. Lee, K.H. Ko, B.O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method, Journal of Crystal Growth 247 (2003) 119-125.
DOI: 10.1016/s0022-0248(02)01907-3
Google Scholar
[31]
V. Musat, B. Teixeira, E. Fortunato, R. C. C. Monteiro, P. Vilarinho, Al-doped ZnO thin films by sol–gel method, Surface and Coatings Technology 180-181 (2004) 659-662.
DOI: 10.1016/j.surfcoat.2003.10.112
Google Scholar
[32]
L.L. Hench, J.K. West, The sol-gel process, Chem. Rev. 90 (1990) 33-72.
Google Scholar
[33]
L.D. Landau and B.G. Levich, Dragging of a liquid film by a moving plate, Acta Physicochim, U.R.S.S. 17 (1972) 42-54.
Google Scholar
[34]
Shuzhi Li, Shengming Zhou, Hongxia Liu, Yin Hang, Changtai Xia, Jun Xu, Shulin Gu, Rong Zhang, Low-temperature hydrothermal growth of oriented.
Google Scholar
[1]
ZnO film, Materials Letters 61 (2007) 30-33.
Google Scholar
[35]
R.E. Marotti, C.D. Bojorge, E. Broitman, H.R. Cánepa, J.A. Badán, E.A. Dalchiele, A.J. Gellman, Characterization of ZnO and ZnO: Al thin films deposited by the sol–gel dip-coating technique, Thin Solid Films 517 (2008) 1077-1080.
DOI: 10.1016/j.tsf.2008.06.028
Google Scholar
[36]
G. G. Valle, P. Hammer, S. H. Pulcinelli, C. V. Santilli, Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating, Journal of the European Ceramic Society 24 (2004) 1009-1013.
DOI: 10.1016/s0955-2219(03)00597-1
Google Scholar
[37]
P. Numpud, T. Charinpanitkul, W. Tanthapanichakoon, Photoinduces hydrophilic property of zinc oxide thin films prepared by sol-gel dip coating method, Journal of the Ceramic Society of Japan 116 (2008) 414-417.
DOI: 10.2109/jcersj2.116.414
Google Scholar
[38]
Chunqiao Ge, Changsheng Xie, Shuizhou Cai, Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating, Materials Science and Engineering: B 137 (2007) 53-58.
DOI: 10.1016/j.mseb.2006.10.006
Google Scholar
[39]
K. Nishio, S. Minake, T. Sei, Y. Watanabe, T. Tsuchiya, Preparation of highly oriented thin film exhibiting transparent conduction by the sol gel process, Journals of Materials Science 31 (2006) 3651- 3656.
DOI: 10.1007/bf00352774
Google Scholar
[40]
D. Bao, H. Gu, A. Kuang, Sol-gel derived c-axis oriented ZnO thin films, Thin Solid Films 312 (1998) 37-39.
DOI: 10.1016/s0040-6090(97)00302-7
Google Scholar
[41]
S. Banyopadhyay, G.K. Paul, R. Ray, S.K. Sen, S. Sen, Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique, Materials Chemistry and Physics 74 (2002) 83-91.
DOI: 10.1016/s0254-0584(01)00402-3
Google Scholar
[42]
D.G. Baik, S. M Cha, Application of sol-gel derived films for ZnO/n-Si junction solar cells, Thin Solid Films 354 (1999) 227-231.
DOI: 10.1016/s0040-6090(99)00559-3
Google Scholar
[43]
G. H Lee, N. Iwata, S. J Kim, Photoluminescence of ZnO Fine Powders Synthesized by Sol-Gel Process, Journal of the Ceramic Society of Japan 113 (2005) 64-66.
DOI: 10.2109/jcersj.113.64
Google Scholar
[44]
S. Suwanboon, The properties of nanostructured ZnO thin film via sol-gel coating, Naresuan University Journal 16 (2008) 173-180.
Google Scholar
[45]
J.H. Lee, B. O Park, Transparent conducting ZnO: Al, In and Sn thin films deposited by the solgel method, Thin Solid Films 426 (2003) 94-99.
DOI: 10.1016/s0040-6090(03)00014-2
Google Scholar
[46]
M. Ohyama, H. Kozuka, T. Yoko, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin Solid Films 306 (1997) 78-85.
DOI: 10.1016/s0040-6090(97)00231-9
Google Scholar