Electrical and Structural Properties of ZnO/TiO2 Nanocomposite Thin Films by RF Magnetron Co-Sputtering

Article Preview

Abstract:

In this study, the ZnO/TiO2 nanocomposite thin films were prepared by RF Magnetron co-sputtering ZnO and TiO2 targets at different deposition times from 30-75 minutes. The electrical and structural properties ZnO/TiO2 nanocomposite thin films were characterized by I-V measurement, atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). The electrical characteristics of nanocomposite films revealed that the conductivity of thin films increases as the thickness increase due to the improvement in surface contact between particles as well as photocatalytic activity. High conductivity at 1.67x10-4 S/cm and lowest resistivity about 5.14x104 Ω/cm were obtained for 75 minutes deposition time. Atomic force microscopy (AFM) showed particle size of ZnO/TiO2 thin films varied from 27nm to 51nm with an increasing in deposition time with granular shapes structures were observed from field emission scanning electron microscopy (FE-SEM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

206-212

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.B. Djuriic, A.M.C. Ng, X.Y. Chen, ZnO nanostuctures for optoelectronics: Materials and device applications, Progress in Quantum 34 (2010) 191-259.

Google Scholar

[2] M. Liao, C. Hsu, D. Chen, Preparation and properties of amorphous titania-coated zinc oxide nanoparticles, Journal of Solid State Chemical 179 (2006) 2020-(2026).

DOI: 10.1016/j.jssc.2006.03.042

Google Scholar

[3] H. Wang, Z. Wu, Y. Liu, Z. Sheng, The characterization of ZnO-Anatase-Rutile three components semiconductor and enhanced photocatalytic activity of nitrogen oxides, Journal of Molecular Catalysis A: Chemical 287 (2008) 176-181.

DOI: 10.1016/j.molcata.2008.03.010

Google Scholar

[4] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor or ethanol detection, Sensors and Actuartors B: Chemical 162 (2012) 237-243.

DOI: 10.1016/j.snb.2011.12.073

Google Scholar

[5] M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect tansistor based on single semiconducting oxide nanobelts, Journal Physic Chemistry 107 (2003) 659-663.

DOI: 10.1021/jp0271054

Google Scholar

[6] D. wei, Dye-sensitized solar cell review, International Journal of Molecular Science 11 (2010) 1103-1113.

Google Scholar

[7] G. Srinivasan, N. Gopalakrishnan, Y.S. Yu, R. Kesavamoorthy, J. Kumar, Influence of post-deposition annealing on the structural and optical properties of ZnO thin films prepared by sol-gel and spin-coating method, Superlattices and Microstructures 43 (2008).

DOI: 10.1016/j.spmi.2007.07.032

Google Scholar

[8] C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light, Materials Research Bulletin 46 (2011).

DOI: 10.1016/j.materresbull.2011.06.019

Google Scholar

[9] S.H. Hwang,  J. Song ,  Y. Jung ,  O. Y. Kweon,  H. Song, J. Jang, Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent, Chemical Communication 47 (2011) 9164-9166.

DOI: 10.1039/c1cc12872h

Google Scholar

[10] D.M. King, X. Liang, C.S. Carney, L.F. Hakim, P. Li, A.W. Weimer, Atomic Layer Deposition of UV-Absorbing ZnO Films on SiO2 Nanoparticles Using a Fluidized Bed Reactor, Advance Functional Materials 18 (2008) 607-615.

DOI: 10.1002/adfm.200700705

Google Scholar

[11] J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin, P. Wu, Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process Ceramics International 35 (2009) 2261-2270.

DOI: 10.1016/j.ceramint.2008.12.010

Google Scholar

[12] J. L Chung, J. C Chen, C. J Tseng, Preparation of TiO2-doped ZnO films by radio frequency magnetron sputtering in ambient hydrogen–argon gas, Applied Surface Science 255 (2008) 2494-2499.

DOI: 10.1016/j.apsusc.2008.07.125

Google Scholar

[13] M. Ohyama, H. Kouzuka, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin solid Films 306 (1997) 78-85.

DOI: 10.1016/s0040-6090(97)00231-9

Google Scholar

[14] S. Benkara and S. Zerkout, Preparation and characterization of ZnO nanorods grown into aligned TiO2 nanotube array, Journal of Materials and Environmental Science 1 (2010) 173-188.

Google Scholar

[15] S.W. Xue, X.T. Zu, L.X. Shao, Z.L. Yuan, W.G. Zheng, X.D. Jiang and H. Deng, Effects of annealing on optical properties of Zn-implanted ZnO thin films, Journal of Alloys and Compounds 458 (2008) 572.

DOI: 10.1016/j.jallcom.2007.04.239

Google Scholar

[16] J.F. Chang, M.H. Hon, The effect of deposition temperature on the properties of Al-doped zinc oxide thin films, Thin Solid Films. 386 (2001) 78-86.

DOI: 10.1016/s0040-6090(00)01891-5

Google Scholar

[17] S.H. Jeong, J.W. Lee, S.B. Lee, J.H. Boo, Deposition of aluminum-doped zinc oxide films by rf magnetron sputtering and study of their structural, electrical and optical properties, Thin solid Films 435 (2003) 78-82.

DOI: 10.1016/s0040-6090(03)00376-6

Google Scholar

[18] G. Battaglin, V. Bello, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, C. Sada, B.F. Scremin, RF magnetron co-sputtering deposition of Cu-based nanocomposite Silica Films for Optical Applications, Journal of Non-Crystalline Solids 345 (2004).

DOI: 10.1016/j.jnoncrysol.2004.08.156

Google Scholar

[19] S. Youssef, P. Combette, J. Podlecki, R. A. Asmar, A. Foucaran, Structural and optical characterization of znO thin films deposited by Reactive rf magnetron Sputtering, Crystal Grown and Design. 9 (2009) 1088-1094.

DOI: 10.1021/cg800905e

Google Scholar