The Effect of Indium Mole Fraction on the Growth Behavior of Your InxGa1-xAs Nanowires (NWs) Grown Using MOCVD

Article Preview

Abstract:

InxGa1-xAs NWs have been grown with various indium mole fractions (x) using MOCVD. The morphology of InxGa1-xAs NWs was observed using Field Emission-Scanning Electron Microscopy (FE-SEM) in order to study the growth behavior of the NWs. FE-SEM results show that the NWs growth mechanism has changed due to changing of indium mole fraction. At low indium mole fraction, the NWs grew via direct impinging mechanism which has produced NWs with relatively uniform diameter. By increasing the value of x the growth mechanism has transformed to the combination of direct impinging and diffusion of source atoms from the surface of substrate causing tapering of NWs. The degree of tapering increases with increasing value of indium mole fraction. InxGa1-xAs NW grown at x = 0.65 has the highest tapering factor, TF = 12.82, whereas NW grown at x = 0.41 has the lowest tapering factor, TF = 2.76.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-230

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Sano, T. Akiyama, K. Nakamura and T. Ito, A Monte-Carlo simulation study of twinning formation in InP nanowires, Journal of Crystal Growth, 301-302 (2007) 862-865.

DOI: 10.1016/j.jcrysgro.2006.11.325

Google Scholar

[2] I. Regolin, D. Sufdeld, S. Luttjohann, V. Khorenko, W. Prost, J. Kastner, G. Dumpich, C. Meier, A. Lorke, and F. J. Tegudej, Growth and characterisation of GaAs/InGaAs/GaAs nanowhiskers on (111) GaAs, Journal of Crystal Growth, 298 (2007) 607-611.

DOI: 10.1016/j.jcrysgro.2006.10.122

Google Scholar

[3] K. A. Dick, K. Deppert, L. Samuelson, and W. Seifert, InAs nanowires grown by MOVPE, Journal of Crystal Growth, 298 (2007) 631-634.

DOI: 10.1016/j.jcrysgro.2006.10.083

Google Scholar

[4] D. M. Cornet and R. R. LaPierre, InGaAs/InP core-shell and axial heterostructure nanowires, Nanotechnology, 18 (2007) art. no. 385305.

DOI: 10.1088/0957-4484/18/38/385305

Google Scholar

[5] S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition, Nano Letters, 8 (2008) 1386-1392.

DOI: 10.1021/nl080129n

Google Scholar

[6] Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, M. Paladagu, J. Zou and A. A. Suvorova, Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires, Nano Letters, 2006 Vol. 6, No. 4 599-604.

DOI: 10.1021/nl052189o

Google Scholar

[7] T. Sato, J. Motohisa, J. Noborisaka, S. Hara and T. Fukui, Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy, Journal of Crystal Growth, 310 (2008) 2359-2364.

DOI: 10.1016/j.jcrysgro.2007.12.048

Google Scholar

[8] R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Applied Physics Letters, 4 (1964) 89 - 90.

DOI: 10.1063/1.1753975

Google Scholar

[9] E. Wibowo, Z. Othaman, S. Sakrani, A.S. Ameruddin, D. Aryanto, R. Muhammad, I. Sumpono, H. Hamidinezhad, Journal of Fundamental Science, Vol. 6, No. 2(2010) 131-135.

Google Scholar

[10] E. Wibowo, Z. Othaman, S. Sakrani, I. Sumpono, The advantage of low growth temperature and V/III ratio for InxGa1-xAs nanowires growth, NANO, Vol. 6, No. 2, World Scientific Publisher (2011).

DOI: 10.1142/s1793292011002457

Google Scholar

[11] G. Cau, Nanostructures & Nanomaterials, Synthesis, Properties & Applications, Imperial College Press, London, (2003).

Google Scholar

[12] H. J. Joyce, Q. Gao, Y. Kim, H. H. Tan, and C. Jagadish, Growth, structural and optical properties of GaAs, InGaAs and AlGaAs nanowires and nanowire heterostruetures, Proceddings of the 20th Annual Meeting of the Lasers and Electro-Optics Society, USA, Florida, Lake Buena Vista, 21-25 October 2007 art. no. 4382451, 407-408.

DOI: 10.1109/leos.2007.4382451

Google Scholar

[13] M. Omari, N. Kouklin, G. Lu, J. Chen, and M Gajdardziska-Josifovska, Fabrication of Cd 3As 2 nanowires by direct vapor-solid growth, and their infrared absorption properties, Nanotechnology, 19 (2008) art. no. 105301.

DOI: 10.1088/0957-4484/19/10/105301

Google Scholar

[14] K.W. Kolasinski, Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth, Current Opinion in Solid State and Materials Science, 10 (2006) 182-191.

DOI: 10.1016/j.cossms.2007.03.002

Google Scholar

[15] E. I. Givargizov, Fundamental aspects of VLS growth, Journal of Crystal Growth, 31 (1975) 20-30.

DOI: 10.1016/0022-0248(75)90105-0

Google Scholar

[16] K. A. Dick., D. Knut, L. Samuelson and W Seifert, Optimization of Au-assisted InAs nanowires grown by MOVPE, Journal of Crystal Growth, 297 (2006) 326-333.

DOI: 10.1016/j.jcrysgro.2006.09.054

Google Scholar