Effect of Hydrothermal Growth Temperature on the Morphology and Structural Properties of Synthesized TiO2 Nanowires

Article Preview

Abstract:

Titanium dioxide nanowires have successfully prepared by hydrothermal method. The effect of hydrothermal growth temperature on the morphology and structural properties of TiO2 nanowires have been investigated. It was observed that at low temperature of 100 °C, the formation of nanowires was at early stage, while hydrothermal treatment at 130 °C showed the TiO2 precursor acquired enough energy for formation of the nanowires. Increased the temperature to 200 °C was formed the bundle of nanowires in microsize. The diameter of nanowires increased as the temperature increased. The TiO2 nanowires produced at temperature of 150 °C and annealed at 500 °C showed highest crystallinity with anatase phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

442-446

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Jitputti, Y. Suzuki, S. Yoshikawa, Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution, Catal. Commun. 9 (2008) 1265–1271.

DOI: 10.1016/j.catcom.2007.11.016

Google Scholar

[2] Y. Lin, Photocatalytic activity of TiO2 nanowire arrays, Mater. Lett. 62 (2008) 246-248.

Google Scholar

[3] K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian, S. Yoshikawa, TiO2- Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells, J. Phys.: Conf. Series 61 (2007) 1112-1116.

DOI: 10.1088/1742-6596/61/1/220

Google Scholar

[4] X. Su, Q. Wu, X. Zhan, J. Wu, S. Wei, Z. Guo, Advanced titania nanostructures and composites for lithium ion battery, J. Mater. Sci. 47 (2012) 2519–2534.

DOI: 10.1007/s10853-011-5974-x

Google Scholar

[5] C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, UV sensor based on TiO2 nanorod arrays on FTO thin film, Sens. Actuators B 156 (2011) 114-119.

DOI: 10.1016/j.snb.2011.03.080

Google Scholar

[6] R. J. Wu, Y. L. Sun, C. C. Lin, H. W. Chen, M. Chavali, Composite of TiO2 Nanowires and Nafion as humidity sensor material, Sens. Actuators B 115 (2006) 198-204.

DOI: 10.1016/j.snb.2005.09.001

Google Scholar

[7] J. Watthanaarun, V. Pavarajarn, P. Supaphol, Titanium (IV) oxide nanofibers by combined sol–gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant, Sci. Tech. Adv. Mater. 6 (2005).

DOI: 10.1016/j.stam.2005.02.002

Google Scholar

[8] J. Shi, X. Wang, Growth of Rutile Titanium Dioxide Nanowires by Pulsed Chemical Vapor Deposition, Cryst. Growth 11 (2011) 949–954.

DOI: 10.1021/cg200140k

Google Scholar

[9] R. Yoshida, Y. Suzuki, S. Yoshikawa, Synthesis of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, J. Solid State Chem. 178 (2005) 2179-2185.

DOI: 10.1016/j.jssc.2005.04.025

Google Scholar

[10] R. A. Zarate, S. Fuentes, A. L. Cabrera, V. M. Fuenzalida, Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process, J. Cryst. Growth 310 (2008) 3630-3637.

DOI: 10.1016/j.jcrysgro.2008.05.020

Google Scholar

[11] J. Xie, X. Wang, Y. Zhou, Understanding Formation Mechanism of Titanate Nanowires through Hydrothermal Treatment of Various Ti-Containing Precursors in Basic Solutions, J. Mater. Sci. Technol. 28 (2012) 488-494.

DOI: 10.1016/s1005-0302(12)60087-5

Google Scholar

[12] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[13] D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications, Adv. Mater. 18 (2006) 2807-2824.

DOI: 10.1002/adma.200502696

Google Scholar

[14] B. Poudel, W. Z. Wang, C. Dames, J. Y. Huang, S. Kunwar, D. Z. Wang, D. Banerjee, G. Chen, Z. F. Ren, Formation of crystallized titania nanotubes and their transformation into nanowires, Nanotechnology 16 (2005) 1935–(1940).

DOI: 10.1088/0957-4484/16/9/086

Google Scholar

[15] R. A. Zarate, S. Fuentes, J. P. wiff, V. M. Fuenzalida, A. L. Cabrera, Chemical composition and phase identification of sodium titanate nanostructures grown from titania by hydrothermal processing. J. Phys. Chem. Solids 68 (2007) 628-637.

DOI: 10.1016/j.jpcs.2007.02.011

Google Scholar

[16] S. P. S. Porto, P. A. Fleury, T. C. Damen, Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2, Phys. Rev. 154 (1967) 522-526.

Google Scholar

[17] T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc. 7 (1978) 321-324.

DOI: 10.1002/jrs.1250070606

Google Scholar