Surface Morphology, Structural, and Bonding Characteristic of Carbon Nanotubes for In Vitro Culture Applications

Article Preview

Abstract:

In this paper, carbon nanotubes were characterized by several characterization methods such as FESEM (field emission scanning electron microscopy), Raman spectroscopy and fourier transform infrared (FTIR) spectroscopy. FESEM is used to characterize the morphology of carbon nanotubes, the structural is characterize by raman spectroscopy and bonding characteristic is determine by FTIR. The morphology of CNTs is found to be multiwall carbon nanotubes with diameter around 30-50 nm. D-peak was observed at 1341 Cm-1 and G-peak at 1575 Cm-1 based on raman spectroscopy result. The chemical bonding observed at range 2400 - 400 from FTIR spectra. These CNTs will be used for in vitro study in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

464-467

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] K. An, Y. Lee, Electronic-structure engineering of carbon nanotubes, NANO: Brief Reports and Reviews. 1 (2006) 115-138.

Google Scholar

[3] S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy, Adv Drug Deliver Rev. (2011) 1340-1351.

DOI: 10.1016/j.addr.2011.06.013

Google Scholar

[4] C. M. Seah, S. P. Chai, S. Ichikawa, A. R. Mohamed, Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol-PEG colloidal solution, Carbon. 50 (2012) 960-967.

DOI: 10.1016/j.carbon.2011.09.059

Google Scholar

[5] J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye, Study on amino-functionalized multiwalled carbon nanotubes, Mater Sci Eng: A. 464 (2007) 151-156.

DOI: 10.1016/j.msea.2007.02.091

Google Scholar

[6] Z. Wuxu, Z. Zhenzhong, Z. Yingge, The application of carbon nanotubes in target drug delivery systems for cancer therapies, Nanoscale Res Lett. 6 (2011) 555.

Google Scholar

[7] F. A. Murphy, A. Schinwald, C. A. Poland, K. Donaldson, The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells, Part Fibre Toxicol. 9 (2012).

DOI: 10.1186/1743-8977-9-8

Google Scholar

[8] M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. nanosci nanotechnol. 10 (2010) 3739-3758.

DOI: 10.1166/jnn.2010.2939

Google Scholar

[9] F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, M. M. Kappes, Raman spectroscopy of individual single-walled carbon nanotubes from various sources, J. Phys. Chem. B. 109 (2005) 10567-10573.

DOI: 10.1021/jp0441745

Google Scholar

[10] X. Zhao, Y. Ando, L. C. Qin, H. Kataura, Y. Maniwa, R. Saito, Radial breathing modes of multiwalled carbon nanotubes, Chem. Phys. lett. 361 (2002) 169-174.

DOI: 10.1016/s0009-2614(02)00955-7

Google Scholar

[11] V. Raffa, G. Ciofani, S. Nitodas, T. Karachalios, D. Alessandro, M. Masini, A. Cuschieri, Can the properties of carbon nanotubes influence their internalization by living cells?, Carbon 46 (2008) 1600-1610.

DOI: 10.1016/j.carbon.2008.06.053

Google Scholar

[12] L. Dong, C. M. Witkowski, M. M. Craig, M. M. Greenwade, K. L. Joseph, Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells, Nanoscale Res Lett. 4 (2009) 1517-1523.

DOI: 10.1007/s11671-009-9429-0

Google Scholar

[13] P. Shreekumar, Toxicity Issues Related to Biomedical Applications of Carbon Nanotubes, J. Nanomed Nanotechnol. 3 (2012) 1-15.

Google Scholar

[14] G. Trykowski, S. Biniak, L. Stobinski, B. Lesiak, Preliminary Investigations into the Purification and Functionalization of Multiwall Carbon Nanotubes, Acta Phys Pol A. 118 (2010) 515.

DOI: 10.12693/aphyspola.118.515

Google Scholar

[15] S. Y. Brichka, G. Prikhod'ko, Y. I. Sementsov, A. Brichka, G. Dovbeshko, O. Paschuk, Synthesis of carbon nanotubes from a chlorine-containing precursor and their properties, Carbon 42 (2004) 2581-2587.

DOI: 10.1016/j.carbon.2004.05.040

Google Scholar

[16] Y. Chen, Z. Sun, Y. Li, B. Tay, Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition, Mater chem. phys. 98 (2006) 256-260.

DOI: 10.1016/j.matchemphys.2005.09.017

Google Scholar