The Effect of Drying Methods on Physicochemical Properties of Nanostructured Zingiber officinale Rosc. (Ginger) Rhizome

Article Preview

Abstract:

Zingiber officinale Roscoe, family of Zingiberaceae is classified as traditional medicinal that globally consumed as spices, food flavouring as well as remedies to treat women during confinement, to treat stomach upset and diarrhoea.The rhizome has been reported to contain abundant bioactive constituents which are mainly polyphenol and flavonoid. Therefore in this research the effect of cabinet drying (60°C) and freeze drying (-40°C) process during preparation of nanostructure Zingiber officinale Roscoe rhizome on particle sizes, surface morphology, FTIR, as well as Total Phenolic Content (TPC) and Total Flavonoid Content(TFC) were compared. Both drying process affect the particle sizes as well as TPC and TFC value. Finer particle size (254.3+ 9.33) and higher TPC (152.54 mg GAE/ g) and TFC (1.42 mgQE/g) were reported for cabinet dried nanostructure Zingiber officinale Rosc. rhizome as compared to freeze dried. The FESEM Photographs revealed that drying processes did affect the surface morphologies of nanostructure Zingiber officinale Rosc rhizome where cabinet dried produced solid spherical particles with a diameter around 100 – 200 nm and some smaller than100nm. Freeze dried consist of many nanoparticles having rod like structure. Both drying process did not significantly affect the presence of active compounds based on FTIR analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

458-463

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Stoilova, A. Krastanov, A. Stoyanova, P. Denev, and S. Gargova, Antioxidant activity of a ginger extract (Zingiber officinale), Food Chem. 102 (2007) 764-770.

DOI: 10.1016/j.foodchem.2006.06.023

Google Scholar

[2] E. W. C. Chan, Y. Y. Lim, S. K. Wong, K. K. Lim, S. P. Tan, F. S. Lianto, and M. Y. Yong, Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species, Food Chem. 113 (2009) 166-172.

DOI: 10.1016/j.foodchem.2008.07.090

Google Scholar

[3] J. Imm, G. Zhang, L. -Y. Chan, V. Nitteranon, and K. L. Parkin.

Google Scholar

[6] Dehydroshogaol, a minor component in ginger rhizome, exhibits quinone reductase inducing and anti-inflammatory activities that rival those of curcumin, Food Res Int. 43 (2010) 2208-2213.

DOI: 10.1016/j.foodres.2010.07.028

Google Scholar

[4] N. Kota, P. Krishna, and K. Polasa, Alterations in antioxidant status of rats following intake of ginger through diet, Food Chem. 106 (2008) 991-996.

DOI: 10.1016/j.foodchem.2007.07.073

Google Scholar

[5] A. T. Afshari, A. Shirpoor, A. Farshid, R. Saadatian, Y. Rasmi, E. Saboory, B. Ilkhanizadeh, and A. Allameh, The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats, Food Chem. 101 (2007) 148-153.

DOI: 10.1016/j.foodchem.2006.01.013

Google Scholar

[6] G. Oboh, A. J. Akinyemi, and A. O. Ademiluyi, Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro, Exp Toxicol Pathol. 64 (2012).

DOI: 10.1016/j.etp.2010.06.002

Google Scholar

[7] Y. Shukla and M. Singh, Cancer preventive properties of ginger: A brief review, Food Chem Toxicol. 45 (2007) 683-690.

DOI: 10.1016/j.fct.2006.11.002

Google Scholar

[8] F. Balestra, E. Cocci, G. Pinnavaia, and S. Romani, Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder, LWT - Food Sci Technol. 44 (2011) 700-705.

DOI: 10.1016/j.lwt.2010.10.017

Google Scholar

[9] L. Tsai, N. Yen, and R.G. R. Chou, Changes in Muscovy duck breast muscle marinated with ginger extract, Food Chem. 130 (2012) 316-320.

DOI: 10.1016/j.foodchem.2011.07.044

Google Scholar

[10] F.L. Yen, T.H. Wu, L.T. Lin, T.M. Cham, and C.C. Lin, Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats, Food Chem Toxicol. 46 (2008) 1771-1777.

DOI: 10.1016/j.fct.2008.01.021

Google Scholar

[11] P. Y. Ma, Z. Y. Fu, Y. L. Su, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, and Q. J. Zhang, Modification of physicochemical and medicinal characterization of Liuwei Dihuang particles by ultrafine grinding, Powder Technol. 191 (2009) 194-199.

DOI: 10.1016/j.powtec.2008.10.008

Google Scholar

[12] L. Zhang, H. Xu, and S. Li, Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder, Innov Food Sci Emerg. 10 (2009) 633-637.

DOI: 10.1016/j.ifset.2009.05.010

Google Scholar

[13] Y. Su, Z. Fu, C. Quan, and W. Wang, Fabrication of nano Rhizama Chuanxiong particles and determination of tetramethylpyrazine, T Nonferr Metal Soc. 16 (2006) s393-s397.

DOI: 10.1016/s1003-6326(06)60218-5

Google Scholar

[14] Y. Tanaka, M. Inkyo, R. Yumoto, J. Nagai, M. Takano, and S. Nagata, Nanoparticulation of Poorly Water Soluble Drugs Using a Wet-Mill Process and Physicochemical Properties of the Nanopowders, Chem. Pharm. Bull. 57(10) (2009) 1050-1057.

DOI: 10.1248/cpb.57.1050

Google Scholar

[15] F.L. Yen, T.H. Wua, L.T. Lin, T.M. Cham, and C.C. Lin, Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats, Food Chem Toxicol. 46 (2008) 1771-1777.

DOI: 10.1016/j.fct.2008.01.021

Google Scholar

[16] Y. Su, Z. Fu, C. Quan, and W. Wang, Fabrication of nano Rhizama Chuanxiong particles and determination of tetramethylpyrazine, T Nonferr Metal Soc. 16, Supplement 1 (2006) s393-s397.

DOI: 10.1016/s1003-6326(06)60218-5

Google Scholar

[17] N. Pawar, S. Pai, M. Nimbalkar, and G. Dixit, RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars, Food Chem. 126 (2011) 1330-1336.

DOI: 10.1016/j.foodchem.2010.11.090

Google Scholar

[18] K. Zhan, K. Xu, and H. Yin, Preparative separation and purification of gingerols from ginger (Zingiber officinale Roscoe) by high-speed counter-current chromatography, Food Chem. 126 (2011) 1959-(1963).

DOI: 10.1016/j.foodchem.2010.12.052

Google Scholar

[19] M. -S. Su and J. L. Silva, Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation, Food Chem. 97 (2006) 447-451.

DOI: 10.1016/j.foodchem.2005.05.023

Google Scholar

[20] N. Roy, R. A. Laskar, I. Sk, D. Kumari, T. Ghosh, and N. A. Begum, A detailed study on the antioxidant activity of the stem bark of Dalbergia sissoo Roxb., an Indian medicinal plant, Food Chem. 126 (2011) 1115-1121.

DOI: 10.1016/j.foodchem.2010.11.143

Google Scholar

[21] W. S. Cheow, M. L. L. Ng, K. Kho, and K. Hadinoto, Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: Effect of freeze-drying adjuvants, Int J Pharm. 404 (2011) 289-300.

DOI: 10.1016/j.ijpharm.2010.11.021

Google Scholar

[22] M. Vicent, E. Sánchez, T. Molina, M. I. Nieto, and R. Moreno, Comparison of freeze drying and spray drying to obtain porous nanostructured granules from nanosized suspensions, J Eur Cer Soc. 32, (2011) 1019-1028.

DOI: 10.1016/j.jeurceramsoc.2011.11.034

Google Scholar

[23] R. Sonada, M. Horibe, T. Oshima, T. Iwasaki, and S. Watano, Improvement of Dissolution Property of Poorly Water-Soluble Drug by Novel Dry Coating Method Using Planetary Ball Mill, Chem. Pharm. Bull. 56(9) ( 2008) 1243-1247.

DOI: 10.1248/cpb.56.1243

Google Scholar

[24] S.Y. Lin, K.S. Chen, and L. Run-Chu, Drying methods affecting the particle sizes, phase transition, deswelling/reswelling processes and morphology of poly(N-isopropylacrylamide) microgel beads, Polymer. 40 (1999) 6307-6312.

DOI: 10.1016/s0032-3861(98)00872-6

Google Scholar

[25] K. Praveen Kumar, Willi Paul, and C. P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility, Process Biochem. 46 (2011) 2007-(2013).

DOI: 10.1016/j.procbio.2011.07.011

Google Scholar

[26] A. B. Meadows, R. J. Murphy, A. O. Olorunda, and T. O. Aina, The Infra-Red Microspectroscopy of 6-Gingerol in Nigerian Ginger (Zingiber Officinale Roscoe, Nigerian Food J. 22 (2004) 18-22.

DOI: 10.4314/nifoj.v22i1.33562

Google Scholar

[27] T. Katsube, Y. Tsurunaga, M. Sugiyama, T. Furuno, and Y. Yamasaki, Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L. ) leaves, Food Chem. 113 (2009) 964-969.

DOI: 10.1016/j.foodchem.2008.08.041

Google Scholar