Theory of Nano-Carbon Based Materials: Cyclotron Resonance, Kohn's Theorem and Hubbard Model

Article Preview

Abstract:

A monolayer of carbon is called graphene. It exhibits unusual properties in the Hall effect and in the cyclotron resonance. It is found that it exhibits fractional charge in the Hall effect. The interactions amongst electrons almost become constant at low temperatures. Hence, the Kohn's theorem, which shows that the interactions do not play much role in determining the cyclotron resonance, becomes operative at low temperatures. The experiments on graphene do not depend on the wave vector dependence of the frequency. Hence whether the dispersion depends on k2 or on k does not matter. The Hubbard model has been very successful in explaining the ground state of several electron systems. We consider a triangle with three vortices. Each vortex can be occupied by two electrons. By using the spin in a particular way, we can obtain new features in the Hubbard model. There is a doubling in the Peierls-Luttinger phase factor and eigen values acquire higher multiplicities than are known for the usual treatment of spin. The flux is distributed on the area of the triangle. The graphene consists of hexagons of carbon atoms but the Hall effect shows that there are defects on which electrons form clusters so that there is spin wave type behaviour. A cluster of electrons shows spin-waves leading to "spin deviation" of several per cent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

516-524

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. A. Zabidi, H. A. Kassim, K. N. Shrivastava, Energy band crossing points in multilayers of graphene, AIP Conf. Proc. 1017 (2008) 326-330.

DOI: 10.1063/1.2940653

Google Scholar

[2] K. N. Shrivastava, The theory of the quantum Hall effect, AIP Conf. Proc. 1017 (2008) 422-428.

Google Scholar

[3] K. N. Shrivastava, Infrared of thin film graphene in a magnetic field and the Hall effect, Proc. SPIE 7155 (2008) 71552F.

Google Scholar

[4] K. N. Shrivastava, Interpretation of fractions in quantum Hall effect, Wei Pan's data 1150 (2009) 59-67.

Google Scholar

[5] W. Kohn, Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas, Phys. Rev. 123 (1961) 1242-1244.

DOI: 10.1103/physrev.123.1242

Google Scholar

[6] E. A. Henriksen, P. Cadden-Zimansky, Z. Jiang, Z. Q. Li, L. -C. Tung, M. E. Schwartz, M. Takita, Y. -J. Wang, P. Kim, H. L. Stromer, Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy, Phys. Rev. Lett. 104 (2010).

DOI: 10.1103/physrevlett.104.067404

Google Scholar

[7] J. Hubbard, Proc. R. Soc. A 240 (1957) 539.

Google Scholar

[8] F. H. L. Essler, H. Frahm, F. Gohmann, A. Klumper, The One-dimensional Hubbard model, Cambridge University Press, (2005).

Google Scholar

[9] R. Peierls, Z. Phys. 80 (1933) 763.

Google Scholar

[10] J. M. Luttinger, The effect of a magnetic field on electrons in a periodic potential, Phys. Rev. 84 (1951) 814-817.

DOI: 10.1103/physrev.84.814

Google Scholar

[11] K. N. Shrivastava, Rational numbers of the fractionally quantized Hall effect, Phys. Lett. A113 (1986) 435-436.

DOI: 10.1016/0375-9601(86)90667-5

Google Scholar

[12] K. N. Shrivastava, Negative-spin quasiparticles in quantum Hall effect, Phys. Lett. A 326 (2004) 469-472.

DOI: 10.1016/j.physleta.2004.04.067

Google Scholar

[13] K. N. Shrivastava, Particle-hole symmetry in quantum Hall effect, Mod. Phys. Lett. 13 (1999) 1087-1090.

DOI: 10.1142/s0217984999001342

Google Scholar

[14] K. N. Shrivastava, Theory of quantum Hall effect with high Landau levels, Mod. Phys. Lett. B 14 (2000) 1009-1013.

DOI: 10.1142/s0217984900001294

Google Scholar

[15] K. N. Shrivastava, The fractional quantum Hall effect: The cases of 5/2 and 12/5, AIP Conf Proc. 1169 (2009) 48-54.

Google Scholar

[16] K. N. Shrivastava, Pfaffian states: Quantum computation, AIP Conf. Proc. 1169 (2009) 241-246.

Google Scholar

[17] K. N. Shrivastava, Plateau-to-plateau phase transition in quantum Hall effect, AIP Conf. Proc. 1250 (2010) 27-30.

Google Scholar

[18] K. N. Shrivastava, Byers and Yang's theorem on flux quantization, AIP Conf. Proc. 1250 (2010) 261-264.

Google Scholar

[19] K. N. Shrivastava, Introduction to quantum Hall effect, Nova Sci. Pub. New York, (2002).

Google Scholar

[20] K. N. Shrivastava, Quantum Hall effect: Expressions, Nova Sci. Pub. New York, (2005).

Google Scholar

[21] K. N. Shrivastava, Electron spin in quantum Hall effect: D. C. Tsui's data, Applied Mechanics and Materials, Wu Fan (ed. ), 110-116(2011)3097-3102.

Google Scholar

[22] K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine structure constant, Phys. Rev. Lett. 45 (1980) 494-497.

DOI: 10.1103/physrevlett.45.494

Google Scholar

[23] D. C. Tsui, H. L. Stormer, A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48 (1982) 1559-1562.

DOI: 10.1103/physrevlett.48.1559

Google Scholar

[24] L. H. Thomas, Nature 117 (1926) 514.

Google Scholar

[25] K. N. Shrivastava, The quantum Hall effect, AIP Conf. Proc. 1482 (2012) 335-339.

Google Scholar