ZnO Nanostructures – Nanorods and Flower-Like on Si/Au Substrates by Solution-Immersion Method in Different pH of Precursor

Article Preview

Abstract:

Low-temperature solution immersion growth of low-dimensional ZnO nanostructures on gold-seeded Si substrate has been demonstrated. pH environment of the precursor solution, Zn(NO3)2.6H2O (zinc nitrate hexahydrate) and C6H12N4 (HMTA) was found to have considerable effect to ZnO morphology and photoluminescence. Structural, morphological and photoluminescence (PL) properties of the samples were obtained from XRD, SEM and PL-Raman characterisation. A near neutral (pH = 6.8) and acidic (pH = 5) precursor solution aided a dense near-aligned ZnO nanorods growth with smallest rods diameter of 30 and 20 nm respectively. Whereas alkaline precursor solution (pH = 9) gave rise to flower-like structures of ZnO. Chemical equations for the reactions and the role of H+ and OH- ions role in affecting the XRD diffraction peaks and morphology, are suggested. Room temperature PL emission spectra of ZnO were collected after excitation at 325 nm. UV and visible emission distinctive of ZnO were formed and the rationale for significant shifts of the visible emission was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-92

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. A. Coleman and C. Jagadish, Basic Properties and Application of ZnO, in Zinc Oxide Bulk, Thin Films and Nanostructures, First ed, C. Jagadish and S. J. Pearton, Eds.: Elsevier, 2006, pp.1-20.

DOI: 10.1016/b978-008044722-3/50001-4

Google Scholar

[2] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292 (2001) 1897.

DOI: 10.1126/science.1060367

Google Scholar

[3] Y. Tong, J. Cheng, Y. Liu, G. G. Siu, Enhanced photocatalytic performance of ZnO hierarchical nanostructures synthesized via a two-temperature aqueous solution route, Scripta Materialia 60 (2009) 1093-1096.

DOI: 10.1016/j.scriptamat.2008.12.060

Google Scholar

[4] M. Gratzel, Mesoporous oxide junctions and nanostructured solar cells, Current Opinion in Colloid & Interface Science 4 (1999) 314-321.

DOI: 10.1016/s1359-0294(99)90013-4

Google Scholar

[5] T. Terasako, M. Yagi, M. Ishizaki, Y. Senda, H. Matsuura, S. Shirakata, Growth of zinc oxide films and nanowires by atmospheric-pressure chemical vapor deposition using zinc powder and water as source materials, Surface & Coatings Technology 201 (2007).

DOI: 10.1016/j.surfcoat.2007.04.017

Google Scholar

[6] H. W. Kim, M. A. Kebede, H. S. Kim, B. Srinivasa, D. Y. Kim, J. Y. Park, S. S. Kim, Effect of growth temperature on the ZnO nanowires prepared by thermal heating of Zn powders, Current Applied Physics 10 (2010) 52-56.

DOI: 10.1016/j.cap.2009.04.010

Google Scholar

[7] Y. -H. Kang, C. -G. Choi, Y. -S. Kim, J. -K. Kim, Influence of seed layers on the vertical growth of ZnO nanowires, Materials Letters 63 (2009) 679–682.

DOI: 10.1016/j.matlet.2008.12.025

Google Scholar

[8] E. Bacaksiz, S. Yilmaz, M. Parlak, A. Varilci, M. Altunbas, Effects of annealing temperature on the structural and optical properties of ZnO hexagonal pyramids, Journal of Alloys and Compounds 478 (2009) 367-370.

DOI: 10.1016/j.jallcom.2008.11.025

Google Scholar

[9] Z. Khusaimi, M. H. Mamat, N. Abdullah, M. Rusop, ZnO Nanoparticles on Si, Si/Au, and Si/Au/ZnO Substrates by Mist-Atomisation, Journal of Nanomaterials 2012 (2012) Article ID 872856.

DOI: 10.1155/2012/872856

Google Scholar

[10] A. Sugunan, H. C. Warad, M. Boman, J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine, J Sol-Gel Sci Techn 39 (2006) 49-56.

DOI: 10.1007/s10971-006-6969-y

Google Scholar

[11] E. D. l. Rosa, S. Sepu´lveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, M. J. Yacaman, Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods, J. Phys. Chem. C 111 (2007) 8489-8495.

DOI: 10.1021/jp071846t

Google Scholar

[12] Z. Khusaimi, S. Amizam, M. H. Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, M. Rusop, Controlled Growth of Zinc Oxide Nanorods by Aqueous-Solution Method, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 40 (2010).

DOI: 10.1080/15533171003629147

Google Scholar

[13] W. -J. Li, E. -W. Shi, W. -Z. Zhong, Z. -W. Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186-196.

DOI: 10.1016/s0022-0248(99)00076-7

Google Scholar

[14] L. Vayssieres, Advanced semiconductor nanostructures, C. R. Chimie 9 (2006) 691-701.

Google Scholar

[15] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, B. K. Tay, Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique, Journal of Crystal Growth 268 (2004) 596-601.

DOI: 10.1016/j.jcrysgro.2004.04.098

Google Scholar

[16] R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, G. S. Kim, G. Khang, H. -S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers, Materials Research Bulletin 42 (2007) 1640-1648.

DOI: 10.1016/j.materresbull.2006.11.035

Google Scholar

[17] C. Chandrinou, N. Boukos, C. Stogios, A. Travlos, PL study of oxygen defect formation in ZnO nanorods, Microelectronics Journal 40 (2009) 296-298.

DOI: 10.1016/j.mejo.2008.07.024

Google Scholar

[18] G. N. Karanikolos, P. Alexandridis, G. Itskos, A. Petrou, and T. J. Mountziaris, Synthesis and Size Control of Luminescent ZnSe Nanocrystals by a Microemulsion-Gas Contacting Technique, Langmui, 20 (2004) 550-553.

DOI: 10.1021/la035397+

Google Scholar

[19] H. K. Yadav, K. Sreenivas, V. Gupta, S. P. Singh, R. S. Katiyar, Effect of surface defects on the visible emission from ZnO nanoparticles, Journal of Materials Research 22 (2007) 2404-2409.

DOI: 10.1557/jmr.2007.0321

Google Scholar

[20] J. H. Cai, G. Ni, G. Hea, Z. Y. Wu, Red luminescence in ZnO films prepared by a glycol-based Pechini method, Physics Letters A 372 (2008) 4104-4108.

DOI: 10.1016/j.physleta.2008.03.011

Google Scholar

[21] P. Jiang, J. -J. Zhou, H. -F. Fang, C. -Y. Wang, Z. L. Wang, S. -S. Xie, Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays, Advanced Functional Materials 17 (2007) 1303-1310.

DOI: 10.1002/adfm.200600390

Google Scholar

[22] S. Yun, J. Lee, J. Yang, S. Lim, Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate, Physica B 405 (2010) 413-419.

DOI: 10.1016/j.physb.2009.08.297

Google Scholar

[23] J. Lee, J. Chun, S. Lim, Improvement of optical properties of post-annealed ZnO nanorods, Physica E 42 (2010) 2143-2146.

DOI: 10.1016/j.physe.2010.04.013

Google Scholar