Ac Conductivity Study of Hexanoyl Chitosan-LiCF3SO3-EC-Al2O3 Nanocomposite Polymer Electrolytes

Article Preview

Abstract:

Films of hexanoyl chitosan-based polymer electrolyte were prepared by solution casting technique. LiCF3SO3, EC and Al2O3 were employed as the doping salt, plasticizer and filler, respectively. The ac conductivity of the electrolyte system under investigation has been studied in the frequency range from 100 Hz to 1 MHz over the temperature range from 273 K to 333 K. The exponent s in the Jonscher’s universal power law equation was analyzed as a function of temperature. The analysis suggests that the conduction mechanism for the nanocomposite electrolyte system can be interpreted based on the correlated barrier hopping (CBH) model. The ac parameters such as the barrier height, WM and cut-off hopping distance, Rmin were calculated. The values of WM and Rmin are found to decrease with increasing temperature in the same manner as the exponent s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-98

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.M. Gray, Polymer Electrolytes, The Royal Society of Chemistry, UK, (1997).

Google Scholar

[2] C.P. Fonseca, S. Neves, Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide, J. Power Sources 104 (2002) 85-89.

DOI: 10.1016/s0378-7753(01)00902-8

Google Scholar

[3] S. Rajendran, O. Mahendran, R. Kannan, Lithium ion conduction in plasticized PMMA-PVdF polymer blend electrolytes, Materials Chemistry and Physics 74 (2002) 52-57.

DOI: 10.1016/s0254-0584(01)00400-x

Google Scholar

[4] Y.W. Park, D.S. Lee, The fabrication and properties of solid polymer electrolytes based on PEO/PVP blends, J. Non-Crystalline Solids 351 (2005) 144-148.

DOI: 10.1016/j.jnoncrysol.2004.07.078

Google Scholar

[5] F. Yuan, H.Z. Chen, H.Y. Yang, H.Y. Li, M. Wang, PAN-PEO solid polymer electrolytes with high ionic conductivity, Materials Chemistry and Physics 89 (2005) 390-394.

DOI: 10.1016/j.matchemphys.2004.09.032

Google Scholar

[6] G.A. Nazri, S.G. Meibuhr, Effect of γ-radiation on the structure and ionic conductivity of 2-(-2-methoxy-ethoxy-ethoxy)polyphosphazane + LiCF3SO3, J. Electrochem. Soc. 136 (1989) 2450-2454.

DOI: 10.1149/1.2097423

Google Scholar

[7] Z. Uchimoto, Z. Ogumi, F.R. Takehara, J.J. Foulkes, Ionically conductive thin polymer films prepared by plasma polymerization, Electrochem. Soc. 137 (1990) 35-40.

DOI: 10.1149/1.2086429

Google Scholar

[8] N. Kobayashi, N. Kubo, R. Hirohashi, Control of ionic conductivity in solid polymer electrolyte by photo irradiation, Electrochim. Acta 37 (1992) 1515-1516.

DOI: 10.1016/0013-4686(92)80101-q

Google Scholar

[9] M. Watanabe, A. Nishimoto, Effects of network structures and incorporated salt spesies on electrochemical properties of polyether-based polymer electrolytes, Solid State Ionics 79 (1995) 306-312.

DOI: 10.1016/0167-2738(95)00079-l

Google Scholar

[10] L.M. Ding, Synthesis, characterization and ionic conductivity of solid polymer electrolytes based on modified alternating maleic anhydride copolymer with oligo (oxyethylene) side chains, Polymer 38(16) (1997) 4267-4273.

DOI: 10.1016/s0032-3861(96)00985-8

Google Scholar

[11] L.M. Ding, J. Shi, C.Z. Yang, Ion-conducting polymers based on modified alternating maleic anhydride copolymer with oligo (oxyethylene) side chains, Synth. Met. 87 (1997) 157-163.

DOI: 10.1016/s0379-6779(97)03817-4

Google Scholar

[12] J. E Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes, Solid State Ionics 7 (1987) 75-79.

DOI: 10.1016/0167-2738(82)90072-8

Google Scholar

[13] S. Rajendran, T. Uma, Effect of ZrO2 on conductivity of PVC-LiBF4-DBP polymer electrolyte, Materials Letters 44 (2000) 208-214.

DOI: 10.1016/s0167-577x(00)00029-x

Google Scholar

[14] B. Kumar, L.G. Scanlon, R.J. Spry, On the origin of conductivity enhancement in polymer-ceramic composite electrolytes, J. Power Sources 96 (2001) 337-342.

DOI: 10.1016/s0378-7753(00)00665-0

Google Scholar

[15] P.A.R.D. Jayathilaka, M.A.K.L. Dissanayake, I. Albinson, B.E. Mellander, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta 47 (2002) 3257-3268.

DOI: 10.1016/s0013-4686(02)00243-8

Google Scholar

[16] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M.A. Hendrickson, Role of ceramic fillers in enhancing the transport of composite polymer electrolytes, Electrochim. Acta 46 (2001) 2457-2461.

DOI: 10.1016/s0013-4686(01)00458-3

Google Scholar

[17] Q. Li, H.Y. Sun, Y. Takeda, N. Imanishi, J. Yang, O. Yamamoto, Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte, J. Power Sources 94 (2001) 201-205.

DOI: 10.1016/s0378-7753(00)00587-5

Google Scholar

[18] S.S. Sekhon, G.S. Sandhar, Effect of SiO2 on conductivity of PEO-AgSCN polymer electrolytes, European Polym. Journal 34 (1998) 435-438.

Google Scholar

[19] G. G Kumar, P. Kim, A.R. Kim, K.S. Nahm, R.N. Elizabeth, Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes, Materials Chemistry and Physics 115 (2009) 40-46.

DOI: 10.1016/j.matchemphys.2008.11.023

Google Scholar

[20] V. Aravindan, P. Vickraman, Lithium flouroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler, Materials Chemistry and Physics 115 (2009) 251-257.

DOI: 10.1016/j.matchemphys.2008.11.062

Google Scholar

[21] Tan Winie, A.K. Arof, FTIR studies on interaction among components in hexanoyl chitosan-based polymer electrolytes, Spectrochim. Acta A 63 (2006) 677-684.

DOI: 10.1016/j.saa.2005.06.018

Google Scholar

[22] F.H. Muhammad, R.H.Y. Subban, S.R. Majid, Tan Winie, A.K. Arof, Characterisation of Al2O3 doped hexanoyl chitosan-LiCF3SO3-EC polymer electrolytes, Materials Research Innovations 13(3) (2009) 249-251.

DOI: 10.1179/143307509x440433

Google Scholar

[23] M.J. Rice, W.L. Roth, Ionic transport in super ionic conductors: a theoretical model, J. Solid State Chemistry 4 (1972) 294-310.

DOI: 10.1016/0022-4596(72)90121-1

Google Scholar

[24] G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in-Iron particles loaded-polymer composites, Composites: Part A 34 (2003) 1187-1198.

DOI: 10.1016/j.compositesa.2003.08.002

Google Scholar

[25] R. Murugaraj, G. Govindaraj, D. George, Ac conductivity and its scaling behavior in lithium and sodium bismuthate glasses, Materials Letters 57 (2003) 1656-1661.

DOI: 10.1016/s0167-577x(02)01047-9

Google Scholar

[26] R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Electrical properties of zinc oxide sputtered thin films, Microelectronics J. 34 (2003) 1087-1092.

DOI: 10.1016/s0026-2692(03)00198-8

Google Scholar

[27] F.H. Abd El-kader, W.H. Osman, K.H. Mahmoud, M.A.F. Basha, Dielectric investigations an ac conductivity of polyvinyl alcohol films doped with europium and terbium chloride, Physica B 403 (2008) 3473-3484.

DOI: 10.1016/j.physb.2008.05.009

Google Scholar

[28] A.E. Bekheet, N.A. Hegab, Ac conductivity and dielectric properties of Ge20Se75In5 films, Vacuum 83 (2009) 391-396.

DOI: 10.1016/j.vacuum.2008.05.023

Google Scholar

[29] L.M. Sharaf El. Deen, The ac conductivity studies for Cu2O-Bi2O3 glassy system, Materials Chemistry and Physics 65 (2000) 275-281.

DOI: 10.1016/s0254-0584(00)00244-3

Google Scholar