Electrical Contact of Au with CNTs Deposited at Different Deposition Temperatures on Silicon Substrate

Article Preview

Abstract:

In this work, the electrical properties of carbon nanotubes were deposited on silicon substrate at different temperatures studied. CNTs were deposited on silicon at temperature 700 to 850 0C by using double-furnace thermal chemical vapor deposition technique. Carbon nanotubes with diameters of 20 to 30 nm were successfully synthesized on a silicon substrate. In this system, carbon nanotubes were grown directly on the p-type silicon. The samples were characterized using field emission scanning electron microscopy and micro-Raman spectroscopy. Based on micro-Raman spectroscopy result, the peak carbon nanotube (around 1 300 to 1 600 nm) was detected. Good electrical contact produced when Au sputter on CNTs characterized by I-V probe. Samples CNTs produced at 850 OC possess good conducting compare to other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-85

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.S. -S. Chien, C. -R. Wang, Y. -L. Chan, H. -L. Lin, M. -H. Chen, R. -J. Wu, Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition, Sensors and Actuators B: Chemical 144 (2010) 120-125.

DOI: 10.1016/j.snb.2009.10.043

Google Scholar

[2] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young's modulus of single-walled nanotubes, Physical Review B - Condensed Matter and Materials Physics 58 (1998) 14013-14019.

DOI: 10.1103/physrevb.58.14013

Google Scholar

[3] R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon 33 (1995) 925-930.

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[4] N. Chiodarelli, O. Richard, H. Bender, M. Heyns, S. De Gendt, G. Groeseneken, P.M. Vereecken, Correlation between number of walls and diameter in multiwall carbon nanotubes grown by chemical vapor deposition, Carbon 50 (2012) 1748-1752.

DOI: 10.1016/j.carbon.2011.12.020

Google Scholar

[5] C.K. Sheng, W. Mahmood Mat Yunus, W.M.Z.W. Yunus, Z. Abidin Talib, A. Kassim, Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique, Physica B: Condensed Matter 403 (2008).

DOI: 10.1016/j.physb.2008.01.029

Google Scholar

[6] M. Archer, M. Christophersen, P.M. Fauchet, Electrical porous silicon chemical sensor for detection of organic solvents, Sensors and Actuators B: Chemical 106 (2005) 347-357.

DOI: 10.1016/j.snb.2004.08.016

Google Scholar

[7] P.M. Fauchet, The integration of nanoscale porous silicon light emitters: materials science, properties, and integration with electronic circuitry, Journal of Luminescence 80 (1998) 53-64.

DOI: 10.1016/s0022-2313(98)00070-2

Google Scholar

[8] H. Dai, Carbon nanotubes: opportunities and challenges, Surface Science 500 (2002) 218-241.

Google Scholar

[9] S. Subramoney, Science of fullerenes and carbon nanotubes. By M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, XVIII, 965 pp., Academic press, San Diego, CA 1996, hardcover, ISBN 012-221820-5, Advanced Materials 9 (1997) 1193-1193.

DOI: 10.1002/adma.19970091518

Google Scholar

[10] W.A. De Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source, Science 270 (1995) 1179-1180.

DOI: 10.1126/science.270.5239.1179

Google Scholar

[11] V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters 1 (2001) 453-456.

DOI: 10.1021/nl015606f

Google Scholar

[12] D. Kondo, S. Sato, Y. Awano, Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles, Chemical Physics Letters 422 (2006) 481-487.

DOI: 10.1016/j.cplett.2006.03.017

Google Scholar

[13] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters 60 (1992) 2204-2206.

DOI: 10.1063/1.107080

Google Scholar

[14] S.A. Bakar, S. Muhamad, P.S.M. Saad, S.A.M. Zobir, R.M. Nor, Y.M. Siran, S.A.M. Rejab, A.J. Asis, S. Tahiruddin, S. Abdullah, M.R. Mahmood, The Effect of Precursor Vaporization Temperature on the Growth of Vertically Aligned Carbon Nanotubes using Palm Oil, Defect and Diffusion Forum 312-315 (2011).

DOI: 10.4028/www.scientific.net/ddf.312-315.906

Google Scholar

[15] J. Dian, A. Macek, D. Nižňanský, I. Němec, V. Vrkoslav, T. Chvojka, I. Jelı́nek, SEM and HRTEM study of porous silicon—relationship between fabrication, morphology and optical properties, Applied Surface Science 238 (2004) 169-174.

DOI: 10.1016/j.apsusc.2004.05.218

Google Scholar

[16] A.B. Suriani, A.A. Azira, S.F. Nik, R. Md Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Materials Letters 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[17] R.A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, P.R. Somani, M. Umeno, Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Microporous and Mesoporous Materials 96 (2006) 184-190.

DOI: 10.1016/j.micromeso.2006.06.036

Google Scholar

[18] R.M. Malek Abbaslou, J. Soltan, A.K. Dalai, The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method, Applied Catalysis A: General 372 (2010) 147-152.

DOI: 10.1016/j.apcata.2009.10.025

Google Scholar

[19] Y. Chai, A. Hazeghi, K. Takei, H. -Y. Chen, P.C.H. Chan, A. Javey, H. -S.P. Wong, Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer, IEEE Transactions On Electron Devices 59 (2012) 12-19.

DOI: 10.1109/ted.2011.2170216

Google Scholar