Preparing Technology of Porous Hydroxyapatite/Chitosan Bioceramics

Article Preview

Abstract:

Hydroxyapatite/Chitosan bioceramics were fabricated by combining in-situ chemical synthesis and freeze drying method, using (NH4)2HPO4, Ca(NO3)2·4H2O, and chitosan(CS) as raw materials. The effect of solid loading and freeze-drying time on microstructures of hydroxyapatite/Chitosan bioceramics was studied. The microstructures of the fabricated porous bioceramics were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the hydroxyapatite/Chitosan bioceramics have interconnected porous structures from several microns to 200um, more suitable to bone tissue implantation. In addition, the porous structures are affected solid loading of slurry and freeze-drying time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

937-940

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.L. Hench: J. Am. Ceram. Soc. Vol. 74 (1991), p.1487.

Google Scholar

[2] L.M. Rodriguez-Lorenzo, M. Vallet-Regi, Chem. Mater. Vol. 12 (2000), p.2460.

Google Scholar

[3] J.T. Edwards, J.B. Brunski, H.W. Higuchi, Biomed. Mater. Res. Vol. 36 (1997), p.454.

Google Scholar

[4] K.J.L. Burg, S. Porter, J.F. Kellam, Biomaterials Vol. 21 (2000), p.2347.

Google Scholar

[5] F.C. Fierz, F. Beckmann, M. Huser, Biomaterials Vol. 29 (2008), p.3799.

Google Scholar

[6] Y. Zhang, M.Q. Zhang, J. Biomed. Mater. Res. Vol. 62 (2002), p.378.

Google Scholar

[7] G. Kumar, J.F. Bristow, P.J. Smith, Polymer Vol. 41 (2000), p.2157.

Google Scholar

[8] J.H. Wang, C.W. Wei, H.C. Liu, J. Biomed. Mater. Res. Vol. 64A (2003), p.606.

Google Scholar

[9] J.R. Jones, L.L. Hench, Curr. Opin: Soild State Mater. Sci. Vol. 7 (2003), p.301.

Google Scholar

[10] Y.B. Li, C.P.A.T. Klein, K.D. Groot, J. Mater. Sci.: Mater. Med. Vol. 5(1994), p.263.

Google Scholar

[11] C.L. Chu, P.H. Lin, Y.S. Dong, J. Mater. Sci. Lett. Vol. 21(2002), p.1793.

Google Scholar

[12] R.M. Shelton, Y. Liu, P.R. Cooper, Biomaterials Vol. 27 (2006), p.2874.

Google Scholar

[13] B.S. Chang, C.K. Lee, K.S. Hong, H.J. Youn, H.S. Ryu, S.S. Chung, K.W. Park, Biomaterials Vol. 21 (2000), p.1291.

Google Scholar

[14] K.H. Zuo, Y.P. Zeng, D.L. Jiang, Mater. Sci. Eng. C Vol. 30 (2010), p.283.

Google Scholar

[15] N. Ozgur Engin, A.C. Tas, Euro. Ceram. Soc. Vol. 19 (1999), p.2569.

Google Scholar

[16] X.W. Zhu, D.L. Jiang, S.H. Tan, Mater. Sci. Eng. A Vol. 323 (2002), p.232.

Google Scholar

[17] C. Falamaki, M. Naimi, A. Aghaie, J. Eur. Ceram. Soc. Vol. 24 (2004), p.3195.

Google Scholar

[18] A. Diaz, S. Hamphshire, J. Eur. Ceram. Soc. Vol. 24 (2004), p.413.

Google Scholar

[19] L.J. Zu, S.J. Luo, J. Mater. Pro. Tech. Vol. 114 (2001), p.189.

Google Scholar

[20] N.M.D. Pasuti, G.P.H.D. Daculsi, J.M.M.D. Rogez, S.M.D. Martin, J.V.M.D. Bainvel, Clin. Orthop. Relat. Res. Vol. 248 (1989), p.169.

Google Scholar

[21] J. Hu, J.J. Russel, B.B. Nissan, R. Vago, Mater. Sci. Lett. Vol. 20 (2001), p.85.

Google Scholar

[22] R.W. Bucholz, A. Carlton, R.E. Holmes, Orthop. Clin. North Am. Vol. 18 (1987), p.323.

Google Scholar