Well-Defined Amphiphilic Polymer-Si(100) Hybrids via Surface-Initiated Atom Transfer Radical Polymerization

Article Preview

Abstract:

Well-defined amphiphilic graft polymer brushes containing fluoropolymer segments have been successfully prepared by (i) UV-induced coupling of 4-vinylbenzyl chloride (VBC) with the hydrogen-termined Si(100) (Si-VBC surface), (ii) surface-initiated atom transfer radical polymerization (ATRP) of 2-hydroxyethl methacrylate (HEMA) to produce the Si–VBC–g–P(HEMA) surface as the backbone of macroinitiator for further ATRPs, (iii) coupling of 2-bromoisobutyrl bromide with the HEMA polymer(P(HEMA)) by the esterification to produce the macroinitiators for the subsequent ATRP(Si–VBC–g–P(HEMA)-R3Br), (iv) surface-initiated ATRP of 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) to produce the Si–VBC–g–P(HEMA)–g–P(HFBA) surface, and (v) the active P(HFBA) chain ends being used as the initiator for the subsequent ATRP of poly(ethylene glycol) monomethacrylate (PEGMA) to produce the amphiphilic Si–VBC–g–P(HEMA)–g–P(HFBA)–b–P(PEGMA) brush surface. The chemical composition and functionality of the silicon surface were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and ellipsometry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-245

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.T. Milner. Polymer Brushes. J. Science. 251(1991) 905-914.

Google Scholar

[2] H.N. Waltenburg, J.T. Yates. Surface chemistry of silicon. J. Chem. Rev. 24 (1995) 1589-1673.

Google Scholar

[3] M.J. Sailor, E.J. Lee. Surface chemistry of luminescent silicon nanocrystallites J. Adv. Mater. 9 (1997) 783-793.

DOI: 10.1002/adma.19970091004

Google Scholar

[4] D.K. Michael, Ingall, H.H. Charles, et al. Surface functionalization and imaging using monolayers and surface-grafted polymer layers J. J. Am. Chem. Soc. 121(1999) 3607-3613.

DOI: 10.1021/ja9833927

Google Scholar

[5] J.M. Buriak, Organometallic Chemistry on Silicon and Germanium Surfaces. J. Chem. Rev. 102(2002) 1271-1308.

DOI: 10.1021/cr000064s

Google Scholar

[6] M. Sergiy. Responsive Polymer Brushes. J. Poly. Rev. 46(2006)  397-420.

Google Scholar

[7] M. Krzysztof, V.T. Nicolay. Nanostructured functional materials prepared by atom transfer radical polymerization. J. Nature Chemistry. 1(2009)276-288.

DOI: 10.1038/nchem.257

Google Scholar

[8] K.Y. Cheng, R. Anthony, U.R. Kortshagen. R.J. Holmes. Hybrid Silicon Nanocrystal−Organic Light-Emitting Devices for Infrared Electroluminescence. J. Nano Lett. 10 (2010) 1154–1157.

DOI: 10.1021/nl903212y

Google Scholar

[9] J.P. Deng, L. Wang, L.Y. Liu, W.T. Yang. . Developments and new applications of UV-induced surface graft polymerizations. J. Progress in Polymer Science. 34(2009) 156–193.

DOI: 10.1016/j.progpolymsci.2008.06.002

Google Scholar

[10] B. Raphael, L. Laurent, P. Dusko, S. Nicolas, S. Caroline, T. Stefano, and K. Harm-Anton. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications, J. Chem. Rev. 109 (2009).

Google Scholar

[11] I.L. Volkov, N.V. Bazlov , A.S. Bondarenko, O.F. Vyvenko .  and N.A. Kas'yanenko . Light-induced noncovalent fixation of DNA and synthetic polyions on the surface of silicon single crystals. J. J. Struc. Chem. 50(2009) 962-969.

DOI: 10.1007/s10947-009-0143-7

Google Scholar

[12] P. Sergiy, V.T. Vladimir. The architectures and surface behavior of highly branched molecules. J. Progress in Polymer Science. 33(2008) 523–580.

DOI: 10.1016/j.progpolymsci.2008.01.003

Google Scholar

[13] D. Astruc , E. Boisselier , C. Ornelas . Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. J. Chem Rev.  110(2010).

DOI: 10.1021/cr900327d

Google Scholar

[14] R.K. Maria, M. Krzysztof, and S.P. Costas. Synthesis, Characterization and Thermolysis of Hyperbranched Homo- and Amphiphilic Co-Polymers Prepared Using an Inimer Bearing a Thermolyzable Acylal Group. J. Macromolecules. 45 (2012) 1313–1320.

DOI: 10.1021/ma202021y

Google Scholar

[15] Z. Feng, T.S.H. Wilhelm. Surface grafted polymer brushes as ideal building blocks for smart, surfaces. J. Phys. Chem. Chem. Phys. 8(2006) 3815-3823.

DOI: 10.1039/b606415a

Google Scholar

[16] J. Parul, L.B. Gregory, and L.B. Merlin. Applications of Polymer Brushes in Protein Analysis and Purification, J. Annual Review of Analytical Chemistry. 2(2009) 387-408.

Google Scholar

[17] C.T. Juan, N. Nabijan, R.H. Robert, A. Jake, H. Jason, R.R. Bridget and G.K. Jennings. Surface-Initiated Polymerization of Superhydrophobic Polymethylene. J. J. Am. Chem. Soc. 132 (2010) 5725-5734.

DOI: 10.1021/ja9086193

Google Scholar

[18] O. Aurore, M. Franck, R. Jean-Marie, D. Pascal, D. Philippe. Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces. J. Pro. Poly. Sci., 37(2012).

DOI: 10.1016/j.progpolymsci.2011.06.002

Google Scholar

[19] F.J. Xu, E.T. Kang, K.G. Neoh. UV-Induced Coupling of 4-Vinylbenzyl Chloride on Hydrogen-Terminated Si(100) Surfaces for the Preparation of Well-Defined Polymer−Si Hybrids via Surface-Initiated ATRP. J. Macromolecules. 38 (2005) 1573–1580.

DOI: 10.1021/ma049225a

Google Scholar

[20] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben. In X-ray Photoelectron Spectroscopy, Chastain J (eds). Perkin-Elmer, Eden Prairie, MN, 1992, 40-43.

Google Scholar

[21] G. Beamson, D. Briggs, High-Resolution XPS of Organic Polymers, The Scienta ESCA300 Database, John Wiley, Chichester, U.K., 1992, 232-236.

DOI: 10.1016/0142-9612(94)90060-4

Google Scholar