Surface Crystalline Phase and Basicity of MgO/ZrO2-La2O3-y Solid Base Catalyst

Article Preview

Abstract:

MgO/ZrO2-La2O3-y solid base catalyst was prepared by precipitation immersion process. Raman spectroscope and X-ray powder diffraction (XRD) were used to determinate the surface phase and bulk phase of solid base catalyst. Temperature programmed desorption of CO2 (CO2-TPD) was employed to study the surface basicity of the catalyst. The results reveal that Mg2+ ion plays a key role in the stabilization of tetragonal phase ZrO2 not only in the bulk but also on the surface of catalyst when the Mg/Zr molar ratio is 0.4. The doping of La2O3 has the role of improving the dispersion of the active component MgO on ZrO2 surface, consequently resulting in the improvement of the catalytic activity of the catalyst rather than stabilizing tetragonal phase ZrO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-256

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Xie, H. Peng, L. Chen, Calcined Mg Al hydrotalcites as solid base catalysts for met hanolysis of soybean oil, J. of Mol. Cat. A: Chemical. 246 (2006) 24-32.

DOI: 10.1016/j.molcata.2005.10.008

Google Scholar

[2] F. Guo, Z. G. Peng, J. Y. Dai, et al, Calcined sodium silicate as solid base catalyst for biodiesel production, Fuel Processing Technology. 91 (2010) 322-328.

DOI: 10.1016/j.fuproc.2009.11.003

Google Scholar

[3] Y. B. Fan, C. S. Lu, Y. F. Zhu, et al, Progresses on Iron-based Fischer-Tropsch synthesis catalysts, Zhejiang Chemical Industry. 10 (2009) 18-22.

Google Scholar

[4] H. Hideshi, Solid base catalysts: generation of basic sites and application to organic synthesis, Applied Catalysis A: General. 222 (2001) 247-259.

DOI: 10.1016/s0926-860x(01)00839-0

Google Scholar

[5] J. C. A. A. Roelofs, A. J. V. Dillen, K. P. D. Jong, Condensation of citral and ketones using activated hydrotalcite catalysts, Catal. Lett. 74 (2001) 91-95.

Google Scholar

[6] T. M. Jyothi, T. Raja, K. Sreekumar, Influence of acid–base properties of mixed oxides derived from hydrotalcite-like precursors in the transfer hydrogenation of propiophenone, J. Mol. Catal. 157 (2000) 193-198.

DOI: 10.1016/s1381-1169(99)00439-2

Google Scholar

[7] Y. J. Wang, Q. X. Zeng, C. G. Feng, Carriers for vehicle tail-gas purification catalysts, Industrial Catalysis. 7 (1999) 3.

Google Scholar

[8] Z. Y. Ma, C. Yang, W. Wei, et al, Preparation and surface properties of different zirconia polymorphs, Acta Phys. Chim. Sin. 20 (2004) 1221-1225.

Google Scholar

[9] W. L. Xie, H. Peng, L. G. Chen, Transesterification of soybean oil catalyzed by potassium lead on alumina as a solid-base catalyst, Applied Catalysis A: General. 300 (2006) 67-74.

DOI: 10.1016/j.apcata.2005.10.048

Google Scholar

[10] S. Furuta, H. Matsuhashi, K. Arata, Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor, Biomass and Bioenergy. 30 (2006) 870-873.

DOI: 10.1016/j.biombioe.2005.10.010

Google Scholar

[11] G. Pacheco, J. J. Fripiat, Physical chemistry of the thermal transformation of mesoporous and microporous zirconia, J. Phys. Chem. B. 104 (2000) 11906-11911.

DOI: 10.1021/jp001455d

Google Scholar

[12] Y. J. Wang, Y. F. Ying, P. Fang, et al, PrOy-ZrO2 solid Solution: characterization and catalytic oxidation of CO, Chinese Journal of Inorganic Chemistry. 7 (2006) 1251-1256.

Google Scholar

[13] Y. X. Zhu, W. Zhuang, D. E. Jiang, et al, The basicity and dispersion state of alkaline earth metal compounds on the surface of ZrO2, Chinese Journal of Catalysis. 21 (2000) 34-35.

Google Scholar

[14] S. G. Chen, Y. S. Yin, C. H. Zhou, Application and study on the mechanism of the phase-stabilized zirconia, Bulletin of the Chinese Ceramic SocIety. 3 (2004) 73-76.

Google Scholar

[15] C. H. Liu, S. Y. Huang, W. Wei, et al, Preparation of mesoporous MgO-ZrO2 nanocomposites, a new solid base, and its catalytic performance, Modern Chemical Industry. 27 (2007) 35-37.

Google Scholar

[16] M. A. P. J. Hacking, F. V. Rantwijk, R. A. Sheldon, Lipase Catalyzed reactions of aliphatic and arylaliphatic carbonic acid esters, J. Mole. Cata1. B: Enzy. 9 (2000) 201-208.

DOI: 10.1016/s1381-1177(99)00097-1

Google Scholar

[17] S. Gryglewiez, F. A. Oko, G. Gryglewiez, Synthesis of modern synthetic oil based on dialkyl carbonates, Ind. Eng. Chem. Res. 42 (2003) 5007-5009.

DOI: 10.1021/ie030322m

Google Scholar

[18] Q. Ouyang, G. Li, The preparation of high carbon alcohol carbonate, Synthetic Lubricants. 22 (1995) 1-5.

Google Scholar

[19] M. J. Li, Z. C. Feng, C. Li, Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy, J. Phys. Chem. B. 105 (2001) 8107-8111.

DOI: 10.1021/jp010526l

Google Scholar

[20] H. B. Guan, J. Liang, Y. X. Zhu, et al, Structure characterization and monolayer dispersion phenomenon of MgO-ZrO2 prepared by co-precipitation, Acta. Phys. Chim. Sin. 21 (2005) 1011-1106.

Google Scholar

[21] K. T. Jung, A. T. Bell, The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia, Journal of Molecular Catalysis A: Chemical. 163 (2000) 27-42.

DOI: 10.1016/s1381-1169(00)00397-6

Google Scholar

[22] Y. S. Cai, D. M. Tong, X. Wu, et al, The effect of sulfa ting agents and preparation methods on the structure and properties of zirconium-based solid acid catalysts, Chemical Research and Application. 20 (2008) 996-1000.

Google Scholar

[23] H. Y. Cui, H. S. Tian, Y. F. Zhu, et al, Study on catalysts for transesterification synthesis of dimethyl carbonate, Guang dong Chemical Industry. 36 (2009) 52-54.

Google Scholar

[24] G. J. Dong, T. Li, Characterization and preparation of zirconia-supported MgO and its use in di-2-ethylhexyl carbonate synthesis, Fine Chemicals. 26 (2009) 166-169.

Google Scholar