Composition Dependent Optical Properties of Zn1-xCdxS Nanostructures

Article Preview

Abstract:

Zn1-xCdxS alloy nanoparticles have been prepared via solvothermal approach. The effects of the mole fraction of Cd on the nanoparticles’ structure, size and photoluminescence spectra were investigated. It shows that with increase in mole fraction of Cd, the lattice structure of Zn1-xCdxS changes from cubic to hexagonal, and the size of these nanoparticles varied within 6-40nm. Room temperature photoluminescence measurements show an intense red shift from 518nm to 662nm. And the band gap energies from 2.3 to 3.54eV can be realized for the Zn1-xCdxS nanopartices. Furthermore, it is found that the conversion of Methylene Blue (MB) using Zn0.6Cd0.4S as the photocatalyst was up to 97% after 2h of irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-339

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Yamamoto, S. Kishimoto, S. IIDA , Physica Status Solidi B 229 (2002) 371.

Google Scholar

[2] G. W. Becker, A.J. Bard, J. Phys. Chem. 87 (1983) 4888.

Google Scholar

[3] X.M. Meng, J. Liu,Y. Jiang, et al., Chem. Phys. Lett. 382(2003)434.

Google Scholar

[4] Qi Lai B.I. Lee J.M. Kim, J.E. Jang J.Y. Choe, J. Lumin. 104 (2003) 261.

Google Scholar

[5] Y. Liu, J.A. Zapien, Y.Y. Shan, C. -Y. Geng, C.S. Lee and S. -T. Lee, Adv. Mater. 17 (2005) 1372.

Google Scholar

[6] X.H. Zhong, Y.Y. Feng, W.F. Knoll, et al., J. Am. Chem. Soc. 125 (2003) 3559.

Google Scholar

[7] Amit Kumar Chawla, Sonal Singhal, Sandeep Nagar, Hari Om Gupta, Ramesh Chandra, J. Appl. Phys. 108 (2010) 123519.

Google Scholar

[8] Z.G. Chen, Q.W. Tian, Y.L. Song, J.M. Yang J.Q. Hu, J. Alloys and Compounds 506 (2010) 804.

Google Scholar

[9] M. R. Kim, S.Y. Park, Du-Jeon Jang, J. Phys. Chem. C 114 (2010) 6452.

Google Scholar

[10] Jia Zhu, J.H. Zhang, J.B. Zhen, C.X. Chen, J. Lu, S. Chen, Physica B 405 (2010) 3452.

Google Scholar

[11] J. Y. Shi, H. J. Yan, X. L. Wang. Z. C. Feng, Z. B. Lei, C. Li, Solid. Stat. Commun. 146 (2008) 249.

Google Scholar

[12] A.M. Salem, Appl. Phys. A Mater. 74 (2002) 205.

Google Scholar

[13] Sonal Singhal, Amit Kumar Chawla, Sandeep Nagar, Hari Om Gupta, Ramesh Chandra, J. Nanopart. Res. 12 (2010) 1415.

Google Scholar

[14] H. Matsumoto, H. Uchida, H. Matsunaga, K. Tanaka, T. Sakata, H. Mori, H. Yoneyama, J. Phys. Chem. 98 (1994) 11549.

DOI: 10.1021/j100095a041

Google Scholar

[15] B.A. Korgel, H.G. Monbouquette, J. Phys. Chem. B101 (1997) 5010.

Google Scholar

[16] N.Z. Bao, L.M. Shen, T. Takata, K. Domen, Chem. Mater. 20 (2008) 110.

Google Scholar

[17] W. J Li, D.Z. Li, Z.X. Chen, H.J. Huang, Meng Sun, Y. H He, X.Z. Fu, J. Phys. Chem. C112 (2008) 14943.

Google Scholar

[18] W.J. Li, D.Z. Li, W.J. Zhang, Yin Hu, Y.H. He, X. Z Fu, J. Phys. Chem. C114 (2010) 2154.

Google Scholar

[19] A. K. Chawla, S. Singhal, S. Nagar, H. O. Gupta, R. Chandra, J. App. Phys. 108 (2010) 123519.

Google Scholar

[20] Batu Ghosh, Amlan J. Pal, J. Phys. Chem. C114 (2010) 13583.

Google Scholar

[21] Y.Y. Luo. G. T. Duan. G. H. Li, Appl. Phys. Lett. 90 (2007) 201911.

Google Scholar