Nonlinear Optical Properties of 0.7(Na1/2Bi1/2)TiO3-0.3(K1/2Bi1/2)TiO3 Thin Films Using Z-Scan Technique

Article Preview

Abstract:

Well-crystallized 0.7(Na1/2Bi1/2)TiO3-0.3(K1/2Bi1/2)TiO3 (NKBT) thin films were prepared on quartz substrates using a sol-gel process. The sign and magnitude of both the real and imaginary parts of third-order nonlinear susceptibility (3) of the thin films have been determined by the Z-scan technique performed at 532nm with picosecond laser. The nonlinear refractive index n2 and the nonlinear absorption coefficient of the thin films are determined to be 3.13×10-8 esu and 3.84×10-9 m/W, respectively. The real part and imaginary part of the third-order nonlinear susceptibility (3) of the sample were calculated and the values were 1.49×10-16 m2/V2and 3.96×10-18 m2/V2, respectively. The results suggested that the nonlinearity is dominated by the refractive for the films and the NKBT thin films is a promising material for applications in nonlinear optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

340-348

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Gu, Y. Wang, W. Ji, and J. Wang, Observation of a fifth-order optical nonlinearity in Bi0. 9La0. 1Fe0. 98Mg0. 02O3 ferroelectric thin films, Appl. Phys. Lett. 95, 041114 (2009).

DOI: 10.1063/1.3191668

Google Scholar

[2] T.Y. Ning, C. Chen, C. Wang, Y.L. Zhou, D.X. Zhang, H. Ming, and G.Z. Yang, Enhanced femtosecond optical nonlinearity of Mn doped Ba0. 6Sr0. 4TiO3 films, J. Appl. Phys. 109, 013101 (2011).

DOI: 10.1063/1.3527969

Google Scholar

[3] H.Z. Chen, B. Yang, M.F. Zhang, F.Y. Wang, K.K. Cheah, and W. W. Cao Third-order optical nonlinear absorption in Bi1. 95La1. 05TiNbO9thinfilms, Thin Solid Films 518(19) 30 5585-5587 (2010).

DOI: 10.1016/j.tsf.2010.05.058

Google Scholar

[4] J. Zhang, K. L. Yao, Z. L. Liu, G. Y. Gao, Z. Y. Sun, and S. W. Fan, First-principles study of the ferroelectric and nonlinear optical properties of the LiNbO3-type ZnSnO3, Phys. Chem. Chem. Phys., 12, 9197-9204 (2010).

DOI: 10.1039/b920065g

Google Scholar

[5] W.J. Leng, C.R. Yang, H. Ji, J.H. Zhang, J.L. Tang, H.W. Chen, and L.F. Gao, Linear and nonlinear optical properties of (Pb, La)(Zr, Ti)O3 ferroelectric thin films grown by radio-frequency magnetron sputtering, J. Phys. D: Appl. Phys. 40, 1206 (2007).

DOI: 10.1088/0022-3727/40/4/045

Google Scholar

[6] F. Gao, L.L. Liu, B. Xu, G.X. Hu, X. Cao, R.Z. Hong, and C.S. Tian, Texture development and dielectric relaxor behavior of 0. 80Na0. 5Bi0. 5TiO3–0. 20K0. 5Bi0. 5TiO3 ceramics templated by plate-like NaNbO 3 particles, Journal of the European Ceramic Society 31 (15), 2987-2996(2011).

DOI: 10.1016/j.jeurceramsoc.2011.07.018

Google Scholar

[7] L. Pardo, Á. García, K. Brebøl, E. Mercadelli, and C. Galassi, Enhanced properties for ultrasonic transduction, phase transitions and thermal depoling in 0. 96(Bi0. 5Na0. 5)TiO3-0. 04BaTiO3 submicrometre-structured ceramics, J. Phys. D: Appl. Phys 44, 335404 (2011).

DOI: 10.1088/0022-3727/44/33/335404

Google Scholar

[8] Q.H. Zhang, Y.Y. Zhang, F.F. Wang, Y.J. Wang, D. Lin, X.Y. Zhao, H.S. Luo, W.W. Ge, and D. Viehland Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0. 5Bi0. 5TiO3–BaTiO3 single crystals, Appl. Phys. Lett. 95, 102904 (2009).

DOI: 10.1063/1.3222942

Google Scholar

[9] H. Zhou, X. Liu, N. Qin, and D.H. Bao Strong red emission in lead-free ferroelectric Pr3+-doped Na0. 5Bi0. 5TiO3 thin films without the need of charge compensation, J. Appl. Phys. 110, 034102 (2011).

DOI: 10.1063/1.3611427

Google Scholar

[10] R. J. Roukos, O. Bidault, J. Pansiot, L. Minier, and L. Saviot, Dielectric Properties and Raman Spectroscopy in Ca-Substituted Na0. 5Bi0. 5TiO3 Ferroelectric Ceramics, Advanced Materials Research, 324, 298-301 (2011).

DOI: 10.4028/www.scientific.net/amr.324.298

Google Scholar

[11] L. L. Yang, Y. G. Wang, Y. J. Wang, and X. F. Wang Room-Temperature Ferromagnetism in Ni-Doped Na0. 5Bi0. 5TiO3 Crystals, Advanced Materials Research, 189-193, 622-625 (2011).

DOI: 10.4028/www.scientific.net/amr.189-193.622

Google Scholar

[12] R. Selvamani, G. Singh, V. Sathe, V. S. Tiwari, and P. K. Gupta, Dielectric, structural and Raman studies on (Na0. 5Bi0. 5TiO3)(1 − x)(BiCrO3)x ceramic, J. Phys.: Condens. Matter 23 055901 (2011).

DOI: 10.1088/0953-8984/23/5/055901

Google Scholar

[13] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron, 26, 760 (1990).

DOI: 10.1109/3.53394

Google Scholar

[14] J. Tauc, and A. Menth, States In The Gap, J. Non-Cryst. Solids. 8/9, 569 (1972).

Google Scholar

[15] J.C. Manifacier, J. Gasiot, and J.P. Fillard. A Simple Method for the Determination of the Optical Constants n, k and the Thickness of a Weakly Absorbing Thin Film, J. Phys. E9, 1002 (1976).

DOI: 10.1088/0022-3735/9/11/032

Google Scholar

[16] M. DiDomenico, and S.H. Wemple. Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-optical and Nonlinear optical Effects, J. Appl. Phys. 40, 720 (1969).

DOI: 10.1063/1.1657458

Google Scholar

[17] W.F. Zhang, Y.B. Huang and M.S. Zhang. Optical properties in ferroelectric (Pb, La)(Ti, Zr)TiO3 thin films grown by pulsed laser deposition, Appl. Surf. Sci. 158 , 185 (2000).

DOI: 10.1016/s0169-4332(99)00581-4

Google Scholar

[18] B.S. Wherrett, Scaling rules for multiphoton interband absorption in semiconductors, J. Opt. Soc. Am. B 1, 67-72 (1984).

DOI: 10.1364/josab.1.000067

Google Scholar

[19] Y. Deng, Y. L. Du, M. S. Zhang, J.H. Han, and Z. Yin. Nonlinear optical properties in SrTiO3 thin films by pulsed laser deposition, Solid State Communications 135, 221 (2005).

DOI: 10.1016/j.ssc.2005.04.031

Google Scholar

[20] S. X Wang, L.D. Zhang, H. Su, Z.P. Zhang, G.H. Li, G.W. Meng, J. Zhang, Y.W. Wang, J.C. Fan, and T. Gao, Two-photon absorption and optical limiting in poly(styrene maleic anhydride)/TiO2 nanocomposites, Phys. Lett. A 281, 59 (2001).

DOI: 10.1016/s0375-9601(00)00846-x

Google Scholar

[21] W.T. Wang and L. Sh. Qu, Composite thin films Fe: BaTiO3 grown on MgO(100) substrates, Phys. Stat. Sol. (a) 201 (4), 727-732 (2004).

DOI: 10.1002/pssa.200306760

Google Scholar

[22] Y Wang, Nonlinear optical properties of nanometer-sized semiconductor clusters, Acc. Chem. Res. 24, 133-139 (1991).

DOI: 10.1021/ar00005a002

Google Scholar

[23] J.M. Ballesteros, R. Serna, J. Solis, C.N. Afonso, A.K. PetfordLong, D.H. Osborne, and R.F. Haglund Pulsed laser deposition of Cu: Al2O3 nanocrystal thin films with high third-order optical susceptibility, Appl. Phys. Lett. 71, 2445 (1997).

DOI: 10.1063/1.120117

Google Scholar

[24] S. Trolier-Mckinstry, C.A. Randall, J. P. Maria, C. Theis, D.G. Schlom, J. Schlom, and K. Yamakawa. Size effect and domains in ferroelectric thin film actuators, Mater. Res. Soc. Symp. Proc. 433, 363 (1996).

DOI: 10.1557/proc-433-363

Google Scholar