Foaming of Polystyrene with Supercritical Carbon Dioxide

Article Preview

Abstract:

General Purpose Polystyrene (GPPS) and High Impact Polystyrene (HIPS) were foamed with supercritical carbon dioxide in the batch foaming process. Foaming behaviors of GPPS and HIPS were investigated. The cell diameters and cell densities of GPPS and HIPS vary strangely with foaming conditions and can be explained by the classical nucleation. The competition between cell growth and cell nucleation is used to explain these strange foaming behaviors. The glass transition temperature (Tg) almost remains constant with the foaming temperature rising.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-370

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Wang, W. Jiang, H. Gao, Z.J. Jiang, Effect of supercritical carbon dioxide on the crystallization behavior of poly(ether ether ketone), J. Polym. Sci., Part B: Polym. Phys. 45 (2007) 173-183.

DOI: 10.1002/polb.21150

Google Scholar

[2] M. Yamaguchi, K. Sucuki, Rhelogical properties and foam processability for blends of linear and crosslinked polyethylenes, J. Polym. Sci., Part B: Polm. Phys. 39(2001) 2159-2167.

DOI: 10.1002/polb.1189

Google Scholar

[3] B.L. Lee, The relationships between mixing and properties of filled polymers and foams, Polym. Composites 6(1985) 115-122.

DOI: 10.1002/pc.750060210

Google Scholar

[4] H. Liu, C. Han, L. Dong, Preparation and characterization of poly(ε-carprolactone)/calcium carbonate nanocomposites and nanocomposite foams, Polym. Composites 31(2010) 1653-1661.

DOI: 10.1002/pc.20955

Google Scholar

[5] J.B. Jeon, G.Y. Jeong, G. B. Min, S.W. Lyoo, Lead ion removal characteristics of poly(lactic acid)/hydroxyapatite composite foams prepared by supercritical CO2 process, Polym. Composites 32(2011) 1405-1415.

DOI: 10.1002/pc.21164

Google Scholar

[6] Y.W. Di, S. Iannace, E. Di Maio, L. Nicolais, Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing, J. Polym. Sci., Part B: Polm. Phys. 43 (2005) 689-698.

DOI: 10.1002/polb.20366

Google Scholar

[7] O. Almanza; M.A. Rodriguez-Perez, J.A. De Saja, Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams, J. Polym. Sci., Part B: Polym. Phys. 38(2000) 993-1004.

DOI: 10.1002/(sici)1099-0488(20000401)38:7<993::aid-polb10>3.0.co;2-j

Google Scholar

[8] S.M. Seraji, M.K. Razavi Aghjeh, M. Davari, M. Salami Hosseini, Sh. Khelgati, Effect of clay dispersion on the cell structure of LDPE/clay nanocomposite foam, Polym. Compos. 32(2011) 1095-1105.

DOI: 10.1002/pc.21127

Google Scholar

[9] Z.M. Xu, X.L. Jiang, T. Liu, G.H. Hu, L. Zhao, Z.N. Zhu, W.K. Yuan, Foaming of polypropylene with supercritical carbon dioxide, J. Supercritical Fluids 41(2007) 299-310.

DOI: 10.1016/j.supflu.2006.09.007

Google Scholar

[10] B. Zhu, W.B. Zha, J.T. Yang, Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent, Polymer 51(2010) 2177-2184.

DOI: 10.1016/j.polymer.2010.03.026

Google Scholar

[11] K.A. Arora, T.J. McCarthy, A.J. Lesser, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide, Macromolecules 31(1998) 4614-4620.

DOI: 10.1021/ma971811z

Google Scholar