Synthesis of Hollow ß-Phase GeO2 in Microemulsion

Article Preview

Abstract:

We fabricated mono-dispersed hollow waxberry shaped ß-quartz GeO2 by a facile one-step synthesis in emulsion at room temperature. TEM images indicated that hollow waxberry shaped GeO2 were consisted of nano-sphere whose average size were estimated to be 20 nm. The growth mechanism and optical properties of the products were also investigated. The possible formation mechanism of the hollow interior is proposed as the Ostwald ripening. The optical properties of the ß-GeO2 nanoparticles with hollow shapes were also studied with photoluminescence spectrum, which reveals a broad emission, suggesting potential applications in electronic and optoelectronic nanodevices. These attractive results provide us a new simple method further used to fabricate other specific hollow structure and indicate hollow waxberry shaped GeO2 may have potential applications in light-emitting nanodevices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-365

Citation:

Online since:

March 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59. Reference to a book.

Google Scholar

[2] W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, 1979. Reference to a chapter in an edited book.

Google Scholar

[3] G.R. Mettam, L.B. Adams, How to prepare an electronic version of your article, in: B.S. Jones, R.Z. Smith (Eds. ), Introduction to the Electronic Age, E-Publishing Inc., New York, 1999, pp.281-304.

Google Scholar

[4] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[5] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

Google Scholar

[6] Information on http: /www. weld. labs. gov. cn.

Google Scholar

[1] F. Caruso, R. A. Caruso, H. Mohwald, Science 282 (1998) 1111-1114.

Google Scholar

[2] C. W. Guo, Y. Cao, S. H. Xie, W. L. Dai ,K. N. Fan, Chem. Commun. 6 (2003) 700-701.

Google Scholar

[3] J. X. Huang, Y. Xie, B. Li, Y. Liu, Y. T. Qian, S. Y. Zhang, Adv. Mater. 12, (2000), 808-811.

Google Scholar

[4] Z. Y. Zhong, Y. D. Yin, B. Gates ,Y. N. Xia, Adv. Mater. 12 (2000) 206-209.

Google Scholar

[5] J. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, L. Lee, X. Li, Y. Xia, Adv. Mater. 17 (2005) 2255-2261.

DOI: 10.1002/adma.200500833

Google Scholar

[6] J. H. Fendler, Science 223 (1984) 888-894.

Google Scholar

[7] P. M. Arnal, C. Weidenthaler, F. Schuth Chem. Mater. 18 (2006) 2733-2739.

Google Scholar

[8] M. Chen, L. M. Wu, S. X. Zhou ,B. You, Adv. Mater. 18 (2006) 801-806.

Google Scholar

[9] Y. J. Li, X. F. Li, Y. L. Li, H. B. Liu, S. Wang, H. Y. Gan, J. B. Li, N. Wang, X. R. He, D. B. Zhu, Angew. Chem., Int. Ed. 45 (2006) 3639-3643.

DOI: 10.1002/anie.200600554

Google Scholar

[10] N. A. Dhas, K. S. Suslick, J. Am. Chem. Soc. 127 (2005) 2368-2369.

Google Scholar

[11] M. Chen, L. M. Wu, S. X. Zhou, B. You, Adv. Mater. 18 (2006) 801-806.

Google Scholar

[12] (a) M. P. Pileni, Nat. Mater. 2, (2003), 145-150.; (b) Q. Y. Sun, P. J. Kooyman, J. G. Grossmann, P. H. H. Bomans, P. M. Frederik, P. C. M. M. Magusin, T. P. M. Beelen, R. A. van Sanetn, N. A. J. M. Sommerdijk, Adv. Mater. 15 (2003) 1097-1100.

DOI: 10.1002/adma.200304793

Google Scholar

[13] S. Pal, E. J. Yoon, Y. K. Tak, E.C. Choi , J. M. Song, J. Am. Chem. Soc. 131 (2009) 16147-16155.

Google Scholar

[14] X.L. Xu , S. A. Asher, J. Am. Chem. Soc. 126 (2004) 7940-7945.

Google Scholar

[15] X. H. Li, D. H. Zhang, and J. S. Chen, J. Am. Chem. Soc. 128 (2006) 8382-8383.

Google Scholar

[16] Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, Chem. Phys. Lett. 303 (1999) 311-314.

Google Scholar

[17] X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun , J. J. Du, Chem. Phys. Lett. 349 (2001) 210-214.

Google Scholar

[18] H. P. Wu, J. F. Liu, M. Y. Ge, L. Niu, Y. W. Zeng, Y. W. Wang, G. L. Lv, L. N. Wang, G. Q. Zhang , J. Z. Jiang, Chem. Mater. 18 (2006) 1817-1820.

Google Scholar

[19] X. Chen, Q. Cai, J. Zhang, Z.Y. Chen, W. Wang, Z. Y. Wu, Z. H. Wu, Mater. Lett. 61 (2007) 535-537.

Google Scholar

[20] Y. W. Chiu , M. H. Huang, J. Phys. Chem. C 113 (2009) 6056-6060.

Google Scholar

[21] V. V. Atuchin, T. A. Gavrilova, S. A. G., Vitalii G. Kostrovsky, | L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco ,C.V. Ramana, Cryst. Growth. Des. 9 (2009) 1829-1832.

DOI: 10.1021/cg8010037

Google Scholar

[22] X. Zou, B.B. Liu, Q.J. Li, Z.P. Li, B, Liu, W, Wu, Q. Zhao, Y.M. Sui, D.M. Li, B. Zou, T. Cui G.T. Zou , H.K. Mao CrystEngComm 13 (2011) 979-984.

DOI: 10.1039/c0ce00170h

Google Scholar

[23] S. Y. Wu, H. S. Hsueh , M. H. Huang, Chem. Mater. 19 (2007) 5986-5990.

Google Scholar

[24] Y.M. Sui, W.Y. Fu, Y. Zeng, H.B. Yang,. Y.Y. Zhang, H. C., Y.X. Li, M.H. Li, G.T. Zou Angew. Chem. Int. Ed. 49 (2010) 4282-4285.

Google Scholar

[25] H. G. Yang , H. C. Zeng, J. Phys. Chem. B 108 (2004) 3492-3495.

Google Scholar

[26] J.C. Lin, J. T. Dipre, M. Z. Yates Langmuir 20 (2004) 1039-1042.

Google Scholar

[27] S. W. Cao, Y. J. Zhu, M.Y. Ma, L. Li, L. Zhang J. Phys. Chem. C 112 (2008) 1851-1856.

Google Scholar

[28] G.B. Sun, X.Q. Zhang, M.H. Cao, B.Q. Wei, C.W. Hu J. Phys. Chem. C 113 (2009) 6948-6954.

Google Scholar

[30] M. Zacharias, P.M. Fauchet, Journal of Non-Crystalline Solids 227 (1998) 1058-1062.

Google Scholar

[31] W. Wu, X. Zou, Q.J. Li, B.B. Liu, B. Liu, R. Liu, D.D. Liu, Z.P. Li, W. Cui, Z.D. Liu, D.M. Li, T. Cui, G.T. Zou Journal of Nanomaterials (2011) 841701-841705.

DOI: 10.1155/2011/841701

Google Scholar