A DFT Study of the Effect of Natural Impurities on the Electronic Structure of Sphalerite

Article Preview

Abstract:

The electronic and reaction properties of natural sphalerite containing seven typical kinds of impurities is studied by the density-functional theory (DFT). Mn and Ga impurities result in the Mulliken charge of the Zn atom reduced and consequently might decrease the ionicity of sphalerite; while Fe, Cd, In, Ge and Tl impurities lead to the increase in the Mulliken charge of the Zn atom. The frontier orbital calculations show that Mn impurities might lead to the over-oxidization of sphalerite, which may cause the further oxidation of lead xanthate, and thus are unfavorable for the flotation of sphalerite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-45

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. ZHANG, W. B. HU, Handbook of mineral processing. Metallurgy Technology Press. 23 (1993) 22-24.

Google Scholar

[2] Q. M. FENG , J. CHEN, Electrochemistry of flotation of sulphide minerals. Central South University of Technology Press. 12 (1993) 69-72.

Google Scholar

[3] S. L. HARMER, L. V. GONCHAROVA, R. KOLAROVA, W. N. LENNARD, Surface structure of sphalerite studied by medium energy ion scattering and XPS. Surface Science. 601 (2007) 352-361.

DOI: 10.1016/j.susc.2006.10.001

Google Scholar

[4] X. Y. XIONG, Effect of the iron content of zinc sulphide concentrates on their semi-conductivity and chemical reactivity. Nonferrous Metals. 1941 (1989) 55-66.

Google Scholar

[5] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64 (1992) 1045-1097.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[6] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[7] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[8] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[9] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13 (2004) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[10] G. U. OERTZEN, R. T. JONES, A. R. GERSON, Electronic and optical properties of Fe, Zn and Pb sulfides. Journal of Electron Spectroscope. 144/147 (2005) 1245-1247.

DOI: 10.1016/j.elspec.2005.01.019

Google Scholar

[11] K. Laajalehto, E. Suoninen, S. Heimala, Studies of the effect of antimony impurity on the flotation behaviour of galena. Int. J. Miner. Process. 33 (1991) 95-102.

DOI: 10.1016/0301-7516(91)90045-k

Google Scholar

[12] K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B. 65 (2001) 035406-035417.

Google Scholar

[13] V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys. Condens. Matter. 9 (1997) 767-808.

DOI: 10.1088/0953-8984/9/4/002

Google Scholar

[14] J. Sauer, R. Sustmann, Mechanistic aspects of diels-alder reactions: a critical survey. Angew. Chem. Int. Ed Engl. 19 (1980) 779-807.

DOI: 10.1002/anie.198007791

Google Scholar