Structural and Magnetic Properties of Ho3Fe29-xTx (T=V and Cr) Compounds

Article Preview

Abstract:

The crystallographic structural characteristics and magnetic properties of Ho3Fe29-xTx (T=V and Cr) compounds have been investigated by using Rietveld refinement analysis of X-ray diffraction (XRD) pattern and magnetic measurements. The calculated results indicate that among the 11 different kinds of Fe sites in these Ho-Fe compounds the preferential sites of the stabilizing elements V and Cr are quite different. The refined lattice parameters of these compounds are in good agreement with the experimental data. Spin reorientations of easy magnetization direction (EMD) are observed at around 150 K for Ho3Fe27V2 and Ho3Fe25.5Cr3.5. At the around 1.7 T critical fields (HCR) first order magnetization process (FOMP) occurs in magnetization curves at 4.2 K for the magnetically aligned samples of Ho3Fe27V2 and Ho3Fe25.5Cr3.5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-50

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.J. Collocott, R.K. Day, J.B. Dunlop and R.L. Davis, Proceedings 7th International Symposium on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, Canberra, 1992, p.437.

Google Scholar

[2] H.S. Li, J.M. Cadogan, R.L. Davis, A. Margarian and J.B. Dunlop, Solid State Commun. 90 (1994) 487-492.

Google Scholar

[3] Z. Hu and W.B. Yelon, J. Appl. Phys. 76 (1994) 6147.

Google Scholar

[4] O. Kalogirou, V. Psycharis, L. Saettas, and D.N. Niarchos, J. Magn. Magn. Mater. 146 (1995) 335.

Google Scholar

[5] V. Psycharis, O. Kalogirou, D. Niarchos and M. Gjoka, Proceedings 3rd International Symposium on Magnetic Material, Seoul, 1995, p.752.

Google Scholar

[6] Z. Chen, G. Teo, D. Brown and D. Miller, J. Appl. Phys. 103 (2008) 07E128_1-3.

Google Scholar

[7] M. Kataoka, T. Satoh and E. Otsuki, J. Appl. Phys. 85 (1999) 4675-4677.

Google Scholar

[8] A. Gholizadeha, N. Tajabora, M. Behdania, M. Kriegischb, F. Kubelc, M. Schönhartb, F. Pourariand and R. Grössinger, Phys. B: Cond. Matter 406 (2011) 3465-3469.

Google Scholar

[9] H.G. Pan, F.M. Yang, Y. Chen, X.F. Han, N. Tang, C.P. Chen and Q.D. Wang, J. Phys.: Condens. Matter 9 (1997) 2499-2505.

Google Scholar

[10] D.P. Lazara, M. Valeanua, A. Galatanua, M.R. Leonovicib, A. Dafineib and L. Ion, J. Alloys Comp. 392 (2005) 31-39.

Google Scholar

[11] X.F. Han, F.M. Yang, H.G. Pan, Y.G. Wang, J.L. Wang, H.L. Liu, N. Tang and R.W. Zhao, J. Appl. Phys. 81 (1997) 7450-7457.

Google Scholar

[12] B.D. Liu, W.X. Li, J.L. Wang, G.H. Wu and F.M. Yang, J. Appl. Phys. 93 (2003) 6927-6929.

Google Scholar

[13] X.F. Han, H.G. Pan, H.L. Liu and F.M. Yang, Phys. Rev. B 56 (1997) 8867-8875.

Google Scholar

[14] D. Yang, J.L. Wang, N. Tang, Y.P. Shen and F.M. Yang, Appl. Phys. Lett. 74 (1999) 4020-4022.

Google Scholar

[15] F. Huang, J.K. Liangy, Q.L. Liu, X. L Chen and G.Y. Huo, J. Phys.: Condens. Matter 10 (1998) 9183-9188.

Google Scholar

[16] W.X. Li, J.G. Guo, B.D. Liu, J. Shen, G.H. Wu, N.X. Chen and F.M. Yang, Phys. Rev. B 69 (2004) 174427_1-11.

Google Scholar

[17] S.J. Collocott, J.B. Dunlop and P.A. Watterson, Phys. Rev. B 76 (2007) 054434_1-8.

Google Scholar

[18] K.G. Efthimiadis, C. Sarafidis, M. Gjoka and O. Kalogirou, J. Magn. Magn. Mater. 316 (2007) e458-e461.

Google Scholar

[19] X.F. Han, H.L. Liu, E.J. Jin, M. Ishizone, M. Oogane and H. Kato, J. Magn. Magn. Mater. 282 (2004) 206-210.

Google Scholar

[20] F. Huang, Ph.D. Thesis, Institute of Physics, Chinese Academy of Science, (1999).

Google Scholar