Preparation of Polyaniline-Modified TiO2 Nanoparticles by In Situ Chemical Oxidative Polymerization and their Photocatalytic Activity for the Degradation of Methyl Orange under Natural Light

Article Preview

Abstract:

Polyaniline-modified nanocrystalline TiO2 composites were successfully prepared by in situ chemical oxidative polymerization and used as an efficient photocatalyst for the degradation of methyl orange under natural light. The nanocomposites were characterized by Transmission electron microscope (TEM), Scanning electron microscope (SEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction and UV-Vis spectra. Results show that polyaniline-modified nanocrystalline TiO2 composites exhibit significantly higher photocatalytic activity than that of neat TiO2 on degradation of methyl orange under natural light. In addition, the conductivity of polyaniline-modified TiO2 nanoparticles was also investigated and has reached 2.65 × 10-1 S cm-1 at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Akira, H. Kenichi, Electrochemical photolysis of water at a semiconductor, Nature 238 (1972) 37-38.

Google Scholar

[2] O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment, Chem. Rev. 93 (1993) 671-698.

DOI: 10.1021/cr00018a003

Google Scholar

[3] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[4] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[5] A. Kathiravan, R. Renganathan, Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins, Journal of Colloid and Interface Science, 331 (2009) 401-407.

DOI: 10.1016/j.jcis.2008.12.001

Google Scholar

[6] Q. Luo, X. Li, D. Wang, Y. Wang, J. An, Photocatalytic activity of polypyrrole/TiO2 nanocomposites under visible and UV light, J Mater Sci. 46 (2011) 1646-1654.

DOI: 10.1007/s10853-010-4981-7

Google Scholar

[7] S. Ghasemi, S. Rahimnejad, S. R. Setayesh, S. Rohani, M. R. Gholami, Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid, Journal of Hazardous Materials 172 (2009).

DOI: 10.1016/j.jhazmat.2009.08.029

Google Scholar

[8] P. Cheng, C. Deng, M. Gu, W. Shangguan, Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation, J Mater Sci. 42 (2007) 9239-9244.

DOI: 10.1007/s10853-007-1902-5

Google Scholar

[9] H. Kisch, S. Sakthivel, M. Janczarek, D. Mitoraj, A low-band gap, nitrogen-modified titania visible-light photocatalyst, J. Phys. Chem. C 111 (2007) 11445-11449.

DOI: 10.1021/jp066457y

Google Scholar

[10] F. Tessier, C. Zollfrank, N. Travitzky, H. Windsheimer, O. Merdrignac-Conanec, J. Rocherulle, P. Greil, Nitrogen-substituted TiO2: investigation on the photocatalytic activity in the visible light range, J Mater Sci. 44 (2009) 6110-6116.

DOI: 10.1007/s10853-009-3845-5

Google Scholar

[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[12] K. J. Hoffmann, E. J. Samuelsen, P. H. J. Carlsen, Broken π-conjugated thiophere systems 1. synthesis and polymerization of 2, 2'-di(alkylthienyl) methanes, Synthetic Metals, 113 (2000) 161-166.

DOI: 10.1016/s0379-6779(00)00209-5

Google Scholar

[13] X. M. Hong, J. C. Tyson, D. M. Collard, Controlling the macromolecular architecture of poly(3-alkylthiophene)s by alternating alkyl and fluoroalkyl substituents, Macromolecules, 33 (2000) 3502-3504.

DOI: 10.1021/ma991997x

Google Scholar

[14] M. Y. Hua, G. W. Hwang, Y. H. Chuang, S. A. Chen, Soluble n-doped polyaniline: synthesis and characterization, Macromolecules 33 (2000)6235-6238.

DOI: 10.1021/ma000376x

Google Scholar

[15] W. L. Yuan, E. A. O'Rear, B. P. Grady, D. T. Glatzhofer, Nanometer-thick poly(pyrrole) films formed by admicellar polymerization under conditions of depleting adsolubilization, Langmuir, 18 (2002) 3343-3351.

DOI: 10.1021/la011349i

Google Scholar

[16] S. Min, F. Wang, Y. Han, An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites, J Mater Sci, 42 (2007) 9966-9972.

DOI: 10.1007/s10853-007-2074-z

Google Scholar

[17] X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y. Wang, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Applied Catalysis B Environmental 81 (2008) 267-273.

DOI: 10.1016/j.apcatb.2007.12.022

Google Scholar

[18] F. Wang, S. X. Min, TiO2/polyaniline composites: an efficient photocatalyst for the degradation of methylene blue under natural light, Chinese Chemical Letters 18 (2007) 1273-1277.

DOI: 10.1016/j.cclet.2007.08.010

Google Scholar

[19] X. Li, W. Chen, C. Bian, J. He, N. Xu, G. Xue, Surface modification of TiO2 nanoparticles by polyaniline, Applied Surface Science 217 (2003) 16-22.

DOI: 10.1016/s0169-4332(03)00565-8

Google Scholar

[20] L. Zhang, P. Liu, Z. Su, Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation, Polymer Degradation and Stability 91(2006) 2213-2219.

DOI: 10.1016/j.polymdegradstab.2006.01.002

Google Scholar