Degradation of Toluene Using Modified TiO2 as Photocatalysts

Article Preview

Abstract:

Volatile organic compounds (VOCs), especially toluene as the typical indoor air pollutants, are toxic and environmentally persistent whose removal is undoubtedly becoming increasingly urgent matter over these years. Titania is one of the most promising photocatalysts for the degradation of organic compounds, whereas the large band gap of titania and massive recombination of photogenerated charge carriers limit its overall photocatalytic effciency. These defects can be tackled by modifying the electronic band structure of titania including various strategies like metal deposition, non-metal atoms substitution, transition metal ions doping, and coupling with a narrow band gap semiconductor, etc. This review encompasses several advancements made in these aspects, and also the influence factors such as physical morphologies changing, humidity, as well as the presence of O2 etc, are involved. To be practically considering, TiO2 photocatalysts require being fixed on the bulky supports like silica, alumina, clays and activated carbons. Moreover, photocatalytic coatings deposited on external building materials, like roofing tiles and corrugated sheets, is becoming the attractive application potentials to remove toluene from air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-18

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Nguyen-Phan, M.B. Song, E.W. Shin, Removal efficiency of gaseous benzene using lanthanide-doped mesoporous Titania, J. Hazard. Mater. 167 (2009) 75-81.

DOI: 10.1016/j.jhazmat.2008.12.085

Google Scholar

[2] J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van Langenhove, Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere. 68 (2007) 1821-1829.

DOI: 10.1016/j.chemosphere.2007.03.053

Google Scholar

[3] Y.L. Chen, D.Z. Li, X.C. Wang, L. Wu, X.X. Wang, X.Z. Fu, Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2, New J. Chem. 29 (2005) 1514-1519.

DOI: 10.1039/b510953a

Google Scholar

[4] Y.C. Feng, L. Li, M. Ge, C.S. Guo, J.F. Wang, L. Liu, Improved catalytic capability of mesoporous TiO2 microspheres and photodecomposition of toluene, ACS Appl. Mater. Interfaces. 2 (2010) 3134-3140.

DOI: 10.1021/am100620f

Google Scholar

[5] T. Wang, X. Jiang, Y. Wu, Influence of crystallization of nano TiO2 prepared by adsorption phase synthesis on photodegradation of gaseous toluene, Ind. Eng. Chem. Res. 48 (2009) 6224-6228.

DOI: 10.1021/ie801974y

Google Scholar

[6] S.W. Liu, J.G. Yu, M. Jaroniec, Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications, Chem. Mater. 23 (2011) 4085-4093.

DOI: 10.1021/cm200597m

Google Scholar

[7] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211-13241.

DOI: 10.1021/jp204364a

Google Scholar

[8] M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.

DOI: 10.1039/b907933e

Google Scholar

[9] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science. 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[10] R. Didier, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications, Catal. Today. 122 (2007) 20-26.

DOI: 10.1016/j.cattod.2007.01.060

Google Scholar

[11] Y. Kuwahara, H. Yamashita, Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials, J. Mater. Chem. 21 (2011) 2407-2416.

DOI: 10.1039/c0jm02741c

Google Scholar

[12] H. Yamashita, H. Nose, Y. Kuwahara, Y. Nishida, S. Yuan, K. Mori, TiO2 photocatalyst loaded on hydrophobic Si3N4 support for efficient degradation of organics diluted in water, Appl. Catal. A: Gen. 350 (2008) 164-168.

DOI: 10.1016/j.apcata.2008.08.015

Google Scholar

[13] D. Kibanova, J. Cervini-Silva, H. Destaillats, Efficiency of clay−TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant, Environ. Sci. Technol. 43 (2009) 1500-1506.

DOI: 10.1021/es803032t

Google Scholar

[14] T. Guo, Z.P. Bai, C. Wu, T. Zhu, Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers : PCO rate and intermediates accumulation, Appl. Catal. B-Environ. 79 (2008) 8.

DOI: 10.1016/j.apcatb.2007.09.033

Google Scholar

[15] D. Kristof, D. Jo, D.W. Bavo, B. Anne, V.L. Herman, Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2, Build. Environ. 43 (2008) 406-414.

DOI: 10.1016/j.buildenv.2007.01.016

Google Scholar

[16] L. Cassar, Photocatalysis of cementitious materials: clean buildings and clean air, Mrs. Bull. 29 (2004) 328-331.

DOI: 10.1557/mrs2004.99

Google Scholar

[17] A. Agrios, P. Pichat, State of the art and perspectives on materials and applications of photocatalysis over TiO2, J. Appl. Electrochem. 35 (2005) 655-663.

DOI: 10.1007/s10800-005-1627-6

Google Scholar

[18] T.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TiO2 new photochemical processes, Chem. Rev. 106 (2006) 4428-4453.

DOI: 10.1021/cr050172k

Google Scholar

[19] . arc , . ddamo, . ugugliaro, S. Coluccia, E. arc a-López, . Loddo, . artra, L. Palmisano, M. Schiavello, Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant, J. Photoch. Photobio. A. 160 (2003).

DOI: 10.1016/s1010-6030(03)00228-4

Google Scholar

[20] S.W. Liu, J.G. Yu, W.G. Wang, Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2, Phys. Chem. Chem. Phys. 12 (2010) 12308-12315.

DOI: 10.1039/c0cp00036a

Google Scholar

[21] . Ksibi, S. Rossignol, J. Tatibouët, C. Trapalis, Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light, Mater. Lett. 62 (2008) 4204-4206.

DOI: 10.1016/j.matlet.2008.06.026

Google Scholar

[22] Y.X. Li, G.F. Ma, S.Q. Peng, G.X. Lu, S.B. Li, Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution, Appl. Surf. Sci. 254 (2008) 6831-6836.

DOI: 10.1016/j.apsusc.2008.04.075

Google Scholar

[23] I.C. Kang, Q.W. Zhang, S. Yin, T. Sato, F. Saito, Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment, Appl. Catal. B: Environ. 80 (2008) 81-87.

DOI: 10.1016/j.apcatb.2007.11.005

Google Scholar

[24] H. Robert, S.S. Felix, S. Jarno, T. Stefan, Y.Y. Song, J. Kunze, V. Lehto, P. Schmuki, Semimetallic TiO2 nanotubes, Angew. Chem. Int. Edit. 48 (2009) 7236-7239.

DOI: 10.1002/anie.200902207

Google Scholar

[25] H.Q. Wang, Z.B. Wu, Y. Liu, A simple two-Step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres, J. Phys. Chem. C. 113 (2009) 13317-13324.

DOI: 10.1021/jp9047693

Google Scholar

[26] Q. Li, Y.W. Li, P.G. Wu, R.C. Xie, J.K. Shang, Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic memory, dv. ater. 20 (2008) 3717-3723.

DOI: 10.1002/adma.200800685

Google Scholar

[27] Y. Cong, J.L. Zhang, F. Chen, M. Anpo, D. N He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III), J. Phys. Chem. C. 111 (2007) 10618-10623.

DOI: 10.1021/jp0727493

Google Scholar

[28] J.M. Thornton, D. Raftery, Efficient photocatalytic hydrogen production by platinum-loaded carbon-doped cadmium indate nanoparticles, ACS Appl. Mater. Interfaces. 4 (2012) 2426-2431.

DOI: 10.1021/am300093t

Google Scholar

[29] F. Dong, S. Guo, H.Q. Wang, X.F. Li, Z.B. Wu, Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach, J. Phys. Chem. C. 115 (2011) 13285-13292.

DOI: 10.1021/jp111916q

Google Scholar

[30] Y. Irokawa, T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki, Y. Taga, Photodegradation of toluene over TiO2-N under visible light irradiation, Phys. Chem. Chem. Phys. 8 (2006) 1116-1121.

DOI: 10.1039/b517653k

Google Scholar

[31] X.F. Chen, X.C. Wang, Y.D. Hou, J.H. Huang, L. Wu, X.Z. Fu, The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation, J. Catal. 255 (2008) 59-67.

DOI: 10.1016/j.jcat.2008.01.025

Google Scholar

[32] S. Livraghi, K. Elghniji, A.M. Czoska, M.C. Paganini, E. Giamello, M. Ksibi, Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light, J. Photoch. Photobio. A. 205 (2009).

DOI: 10.1016/j.jphotochem.2009.04.010

Google Scholar

[33] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven N−F−codoped TiO2 photocatalysts. 2. optical characterization, photocatalysis, and potential application to air purification, Chem. Mater. 17 (2005) 2596-2602.

DOI: 10.1021/cm049099p

Google Scholar

[34] Z.B. Wu, F. Dong, Y. Liu, H.Q. Wang, Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5, Catal. Commun. 11 (2009) 82-86.

DOI: 10.1016/j.catcom.2009.08.015

Google Scholar

[35] H. Park, W. Choi, M.R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production, J. Mater. Chem. 18 (2008) 2379-2385.

DOI: 10.1039/b718759a

Google Scholar

[36] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater. 5 (2006) 782-786.

DOI: 10.1038/nmat1734

Google Scholar

[37] F. Dong, H.Q. Wang, G. Sen, Z.B. Wu, S.C. Lee, Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air, J. Hazard. Mater. 187 (2011) 509-516.

DOI: 10.1016/j.jhazmat.2011.01.062

Google Scholar

[38] H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Y.B. Zhang, Fabrication of TiO2−Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution, J. Phys. Chem. C. 112 (2008) 9285-9290.

DOI: 10.1021/jp8011393

Google Scholar

[39] X.B. Li, L.L. Wang, X.H. Lu, Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation, J. Hazard. Mater. 177 (2010) 639-647.

DOI: 10.1016/j.jhazmat.2009.12.080

Google Scholar

[40] F. Hatayama, T. Ohno, T. Maruoka, H. Miyata, Structure and acidity of vanadium oxide layered on titania (anatase and rutile), J. Chem. Soc., Faraday Trans. 87 (1991) 2629-2633.

DOI: 10.1039/ft9918702629

Google Scholar

[41] M. Cavalleri, K. Hermann, A. Knop- ericke, . Hävecker, R. Herbert, C. Hess, . Oestereich, J. Döbler, R. Schlögl, nalysis of silica-supported vanadia by X-ray absorption spectroscopy: Combined theoretical and experimental studies, J. Catal. 262 (2009).

DOI: 10.1016/j.jcat.2008.12.013

Google Scholar

[42] C. Freitag, S. Besselmann, E. Löffler, W. rünert, F. Rosowski, . uhler, On the role of monomeric vanadyl species in toluene oxidation over V2O5/TiO2 catalysts: a kinetic study using the TAP reactor, Catal. Today. 91-92 (2004) 143-147.

DOI: 10.1016/j.cattod.2004.03.023

Google Scholar

[43] Y.B. He, Z. B Rui, H.B. Ji, In situ DRIFTS study on the catalytic oxidation of toluene over V2O5/TiO2 under mild conditions, Catal. Commun. 14 (2011) 77-81.

DOI: 10.1016/j.catcom.2011.07.024

Google Scholar

[44] M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima, TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3, Appl. Catal. B: Environ. 60 (2005) 173-179.

DOI: 10.1016/j.apcatb.2005.02.030

Google Scholar

[45] F.M. Bautista, J.M. Campelo, D. Luna, J. Luque, J. M. Marinas, Vanadium oxides supported on TiO2-Sepiolite and Sepiolite: preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene, Appl. Catal. A: Gen. 325 (2007).

DOI: 10.1016/j.apcata.2007.02.033

Google Scholar

[46] H. Ge, G.W. Chen, Q. Yuan, H.Q. Li, Gas phase partial oxidation of toluene over modified V2O5/TiO2 catalysts in a microreactor, Chem. Eng. J. 127 (2007) 39-46.

DOI: 10.1016/j.cej.2006.09.024

Google Scholar

[47] L. Kiwi-Minsker, D.A. Bulushev, F. Rainone, A. Renken, Implication of the acid-base properties of V/Ti-oxide catalyst in toluene partial oxidation, J. Mol. Catal. A: Chem. 184 (2002) 223-235.

DOI: 10.1016/s1381-1169(01)00529-5

Google Scholar

[48] D.A. Bulushev, L. Kiwi-Minsker, V.I. Zaikovskii, O.B. Lapina, A.A. Ivanov, S.I. Reshetnikov, A. Renken, Effect of potassium doping on the structural and catalytic properties of V/Ti-oxide in selective toluene oxidation, Appl. Catal. A: Gen. 202 (2000).

DOI: 10.1016/s0926-860x(00)00538-x

Google Scholar

[49] M.H. Zhou, J.G. Yu, S.W. Liu, P.C. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method, J. Hazard. Mater. 154 (2008) 1141-1148.

DOI: 10.1016/j.jhazmat.2007.11.021

Google Scholar

[50] L. Wu, J.C. Yu, X.Z. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, J. Mol. Catal. A: Chem. 244 (2006) 25-32.

DOI: 10.1016/j.molcata.2005.08.047

Google Scholar

[51] F. Bosc, D. Edwards, N. Keller, V. Keller, A. Ayral, Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation, Thin Solid Films. 495 (2006) 272-279.

DOI: 10.1016/j.tsf.2005.08.361

Google Scholar

[52] M. Zaharescu, A. Barau, L. Predoana, M. Gartner, M. Anastasescu, J. Mrazek, I. Kasik, V. Matejec, TiO2-SiO2 sol-gel hybrid films and their sensitivity to gaseous toluene, J. Non-Cryst. Solids. 354 (2008) 693-699.

DOI: 10.1016/j.jnoncrysol.2007.07.098

Google Scholar

[53] N. Negishi, S. Matsuzawa, K. Takeuchi, P. Pichat, Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination:  characteristics and photocatalytic activities for removing acetaldehyde or toluene in air, Chem. Mater. 19 (2007).

DOI: 10.1021/cm070320i

Google Scholar