[1]
T. Nguyen-Phan, M.B. Song, E.W. Shin, Removal efficiency of gaseous benzene using lanthanide-doped mesoporous Titania, J. Hazard. Mater. 167 (2009) 75-81.
DOI: 10.1016/j.jhazmat.2008.12.085
Google Scholar
[2]
J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van Langenhove, Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere. 68 (2007) 1821-1829.
DOI: 10.1016/j.chemosphere.2007.03.053
Google Scholar
[3]
Y.L. Chen, D.Z. Li, X.C. Wang, L. Wu, X.X. Wang, X.Z. Fu, Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2, New J. Chem. 29 (2005) 1514-1519.
DOI: 10.1039/b510953a
Google Scholar
[4]
Y.C. Feng, L. Li, M. Ge, C.S. Guo, J.F. Wang, L. Liu, Improved catalytic capability of mesoporous TiO2 microspheres and photodecomposition of toluene, ACS Appl. Mater. Interfaces. 2 (2010) 3134-3140.
DOI: 10.1021/am100620f
Google Scholar
[5]
T. Wang, X. Jiang, Y. Wu, Influence of crystallization of nano TiO2 prepared by adsorption phase synthesis on photodegradation of gaseous toluene, Ind. Eng. Chem. Res. 48 (2009) 6224-6228.
DOI: 10.1021/ie801974y
Google Scholar
[6]
S.W. Liu, J.G. Yu, M. Jaroniec, Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications, Chem. Mater. 23 (2011) 4085-4093.
DOI: 10.1021/cm200597m
Google Scholar
[7]
S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211-13241.
DOI: 10.1021/jp204364a
Google Scholar
[8]
M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.
DOI: 10.1039/b907933e
Google Scholar
[9]
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science. 293 (2001) 269-271.
DOI: 10.1126/science.1061051
Google Scholar
[10]
R. Didier, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications, Catal. Today. 122 (2007) 20-26.
DOI: 10.1016/j.cattod.2007.01.060
Google Scholar
[11]
Y. Kuwahara, H. Yamashita, Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials, J. Mater. Chem. 21 (2011) 2407-2416.
DOI: 10.1039/c0jm02741c
Google Scholar
[12]
H. Yamashita, H. Nose, Y. Kuwahara, Y. Nishida, S. Yuan, K. Mori, TiO2 photocatalyst loaded on hydrophobic Si3N4 support for efficient degradation of organics diluted in water, Appl. Catal. A: Gen. 350 (2008) 164-168.
DOI: 10.1016/j.apcata.2008.08.015
Google Scholar
[13]
D. Kibanova, J. Cervini-Silva, H. Destaillats, Efficiency of clay−TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant, Environ. Sci. Technol. 43 (2009) 1500-1506.
DOI: 10.1021/es803032t
Google Scholar
[14]
T. Guo, Z.P. Bai, C. Wu, T. Zhu, Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers : PCO rate and intermediates accumulation, Appl. Catal. B-Environ. 79 (2008) 8.
DOI: 10.1016/j.apcatb.2007.09.033
Google Scholar
[15]
D. Kristof, D. Jo, D.W. Bavo, B. Anne, V.L. Herman, Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2, Build. Environ. 43 (2008) 406-414.
DOI: 10.1016/j.buildenv.2007.01.016
Google Scholar
[16]
L. Cassar, Photocatalysis of cementitious materials: clean buildings and clean air, Mrs. Bull. 29 (2004) 328-331.
DOI: 10.1557/mrs2004.99
Google Scholar
[17]
A. Agrios, P. Pichat, State of the art and perspectives on materials and applications of photocatalysis over TiO2, J. Appl. Electrochem. 35 (2005) 655-663.
DOI: 10.1007/s10800-005-1627-6
Google Scholar
[18]
T.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TiO2 new photochemical processes, Chem. Rev. 106 (2006) 4428-4453.
DOI: 10.1021/cr050172k
Google Scholar
[19]
. arc , . ddamo, . ugugliaro, S. Coluccia, E. arc a-López, . Loddo, . artra, L. Palmisano, M. Schiavello, Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant, J. Photoch. Photobio. A. 160 (2003).
DOI: 10.1016/s1010-6030(03)00228-4
Google Scholar
[20]
S.W. Liu, J.G. Yu, W.G. Wang, Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2, Phys. Chem. Chem. Phys. 12 (2010) 12308-12315.
DOI: 10.1039/c0cp00036a
Google Scholar
[21]
. Ksibi, S. Rossignol, J. Tatibouët, C. Trapalis, Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light, Mater. Lett. 62 (2008) 4204-4206.
DOI: 10.1016/j.matlet.2008.06.026
Google Scholar
[22]
Y.X. Li, G.F. Ma, S.Q. Peng, G.X. Lu, S.B. Li, Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution, Appl. Surf. Sci. 254 (2008) 6831-6836.
DOI: 10.1016/j.apsusc.2008.04.075
Google Scholar
[23]
I.C. Kang, Q.W. Zhang, S. Yin, T. Sato, F. Saito, Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment, Appl. Catal. B: Environ. 80 (2008) 81-87.
DOI: 10.1016/j.apcatb.2007.11.005
Google Scholar
[24]
H. Robert, S.S. Felix, S. Jarno, T. Stefan, Y.Y. Song, J. Kunze, V. Lehto, P. Schmuki, Semimetallic TiO2 nanotubes, Angew. Chem. Int. Edit. 48 (2009) 7236-7239.
DOI: 10.1002/anie.200902207
Google Scholar
[25]
H.Q. Wang, Z.B. Wu, Y. Liu, A simple two-Step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres, J. Phys. Chem. C. 113 (2009) 13317-13324.
DOI: 10.1021/jp9047693
Google Scholar
[26]
Q. Li, Y.W. Li, P.G. Wu, R.C. Xie, J.K. Shang, Palladium oxide nanoparticles on nitrogen-doped titanium oxide: accelerated photocatalytic disinfection and post-illumination catalytic memory, dv. ater. 20 (2008) 3717-3723.
DOI: 10.1002/adma.200800685
Google Scholar
[27]
Y. Cong, J.L. Zhang, F. Chen, M. Anpo, D. N He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III), J. Phys. Chem. C. 111 (2007) 10618-10623.
DOI: 10.1021/jp0727493
Google Scholar
[28]
J.M. Thornton, D. Raftery, Efficient photocatalytic hydrogen production by platinum-loaded carbon-doped cadmium indate nanoparticles, ACS Appl. Mater. Interfaces. 4 (2012) 2426-2431.
DOI: 10.1021/am300093t
Google Scholar
[29]
F. Dong, S. Guo, H.Q. Wang, X.F. Li, Z.B. Wu, Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach, J. Phys. Chem. C. 115 (2011) 13285-13292.
DOI: 10.1021/jp111916q
Google Scholar
[30]
Y. Irokawa, T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki, Y. Taga, Photodegradation of toluene over TiO2-N under visible light irradiation, Phys. Chem. Chem. Phys. 8 (2006) 1116-1121.
DOI: 10.1039/b517653k
Google Scholar
[31]
X.F. Chen, X.C. Wang, Y.D. Hou, J.H. Huang, L. Wu, X.Z. Fu, The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation, J. Catal. 255 (2008) 59-67.
DOI: 10.1016/j.jcat.2008.01.025
Google Scholar
[32]
S. Livraghi, K. Elghniji, A.M. Czoska, M.C. Paganini, E. Giamello, M. Ksibi, Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light, J. Photoch. Photobio. A. 205 (2009).
DOI: 10.1016/j.jphotochem.2009.04.010
Google Scholar
[33]
D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven N−F−codoped TiO2 photocatalysts. 2. optical characterization, photocatalysis, and potential application to air purification, Chem. Mater. 17 (2005) 2596-2602.
DOI: 10.1021/cm049099p
Google Scholar
[34]
Z.B. Wu, F. Dong, Y. Liu, H.Q. Wang, Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5, Catal. Commun. 11 (2009) 82-86.
DOI: 10.1016/j.catcom.2009.08.015
Google Scholar
[35]
H. Park, W. Choi, M.R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production, J. Mater. Chem. 18 (2008) 2379-2385.
DOI: 10.1039/b718759a
Google Scholar
[36]
H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater. 5 (2006) 782-786.
DOI: 10.1038/nmat1734
Google Scholar
[37]
F. Dong, H.Q. Wang, G. Sen, Z.B. Wu, S.C. Lee, Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air, J. Hazard. Mater. 187 (2011) 509-516.
DOI: 10.1016/j.jhazmat.2011.01.062
Google Scholar
[38]
H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Y.B. Zhang, Fabrication of TiO2−Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution, J. Phys. Chem. C. 112 (2008) 9285-9290.
DOI: 10.1021/jp8011393
Google Scholar
[39]
X.B. Li, L.L. Wang, X.H. Lu, Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation, J. Hazard. Mater. 177 (2010) 639-647.
DOI: 10.1016/j.jhazmat.2009.12.080
Google Scholar
[40]
F. Hatayama, T. Ohno, T. Maruoka, H. Miyata, Structure and acidity of vanadium oxide layered on titania (anatase and rutile), J. Chem. Soc., Faraday Trans. 87 (1991) 2629-2633.
DOI: 10.1039/ft9918702629
Google Scholar
[41]
M. Cavalleri, K. Hermann, A. Knop- ericke, . Hävecker, R. Herbert, C. Hess, . Oestereich, J. Döbler, R. Schlögl, nalysis of silica-supported vanadia by X-ray absorption spectroscopy: Combined theoretical and experimental studies, J. Catal. 262 (2009).
DOI: 10.1016/j.jcat.2008.12.013
Google Scholar
[42]
C. Freitag, S. Besselmann, E. Löffler, W. rünert, F. Rosowski, . uhler, On the role of monomeric vanadyl species in toluene oxidation over V2O5/TiO2 catalysts: a kinetic study using the TAP reactor, Catal. Today. 91-92 (2004) 143-147.
DOI: 10.1016/j.cattod.2004.03.023
Google Scholar
[43]
Y.B. He, Z. B Rui, H.B. Ji, In situ DRIFTS study on the catalytic oxidation of toluene over V2O5/TiO2 under mild conditions, Catal. Commun. 14 (2011) 77-81.
DOI: 10.1016/j.catcom.2011.07.024
Google Scholar
[44]
M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima, TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3, Appl. Catal. B: Environ. 60 (2005) 173-179.
DOI: 10.1016/j.apcatb.2005.02.030
Google Scholar
[45]
F.M. Bautista, J.M. Campelo, D. Luna, J. Luque, J. M. Marinas, Vanadium oxides supported on TiO2-Sepiolite and Sepiolite: preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene, Appl. Catal. A: Gen. 325 (2007).
DOI: 10.1016/j.apcata.2007.02.033
Google Scholar
[46]
H. Ge, G.W. Chen, Q. Yuan, H.Q. Li, Gas phase partial oxidation of toluene over modified V2O5/TiO2 catalysts in a microreactor, Chem. Eng. J. 127 (2007) 39-46.
DOI: 10.1016/j.cej.2006.09.024
Google Scholar
[47]
L. Kiwi-Minsker, D.A. Bulushev, F. Rainone, A. Renken, Implication of the acid-base properties of V/Ti-oxide catalyst in toluene partial oxidation, J. Mol. Catal. A: Chem. 184 (2002) 223-235.
DOI: 10.1016/s1381-1169(01)00529-5
Google Scholar
[48]
D.A. Bulushev, L. Kiwi-Minsker, V.I. Zaikovskii, O.B. Lapina, A.A. Ivanov, S.I. Reshetnikov, A. Renken, Effect of potassium doping on the structural and catalytic properties of V/Ti-oxide in selective toluene oxidation, Appl. Catal. A: Gen. 202 (2000).
DOI: 10.1016/s0926-860x(00)00538-x
Google Scholar
[49]
M.H. Zhou, J.G. Yu, S.W. Liu, P.C. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method, J. Hazard. Mater. 154 (2008) 1141-1148.
DOI: 10.1016/j.jhazmat.2007.11.021
Google Scholar
[50]
L. Wu, J.C. Yu, X.Z. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, J. Mol. Catal. A: Chem. 244 (2006) 25-32.
DOI: 10.1016/j.molcata.2005.08.047
Google Scholar
[51]
F. Bosc, D. Edwards, N. Keller, V. Keller, A. Ayral, Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation, Thin Solid Films. 495 (2006) 272-279.
DOI: 10.1016/j.tsf.2005.08.361
Google Scholar
[52]
M. Zaharescu, A. Barau, L. Predoana, M. Gartner, M. Anastasescu, J. Mrazek, I. Kasik, V. Matejec, TiO2-SiO2 sol-gel hybrid films and their sensitivity to gaseous toluene, J. Non-Cryst. Solids. 354 (2008) 693-699.
DOI: 10.1016/j.jnoncrysol.2007.07.098
Google Scholar
[53]
N. Negishi, S. Matsuzawa, K. Takeuchi, P. Pichat, Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: characteristics and photocatalytic activities for removing acetaldehyde or toluene in air, Chem. Mater. 19 (2007).
DOI: 10.1021/cm070320i
Google Scholar