Characterization of HCl-Doped Polyaniline-Ag Nanocomposite Prepared by Chemical and Physical Combinative Method

Article Preview

Abstract:

HCl-doped polyaniline (HCl-PANI) powder is synthesized by using a chemical polymerization procedure. Then Ag nanoparticles are deposited on the HCl-PANI at room temperature by RF sputtering. After this process, the nanocomposite is obtained by the chemical and physical combinative method. The nominal Ag content in the nanocomposite ranges from 1.0 wt% to 3.3 wt%. For all the nanocomposites, the Ag nanoparticles convert to AgCl nanoparticles. Namely, the HCl-PANI-AgCl nanocomposites are obtained. A content of the AgCl in the nanocomposite increases with increasing Ag content. The AgCl nanoparticle consists of many grains. An average grain size of AgCl is about 40 nm and is independent of the Ag content. A conductivity of the nanocomposite decreases with increasing Ag content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.K. Khanna, N. Singh, S. Charan and A.K. Viswanath: Mater. Chem. Phys. Vol. 92 (2005), p.214.

Google Scholar

[2] Y. Lee, J. Park, Y. Jun, D. Kim, J. Lee, Y.C. Kim and S. Oh: Synth. Met. Vol. 158 (2008), p.143.

Google Scholar

[3] R.A. de Barros and W.M. de Azevedo: Synth. Met. Vol. 158 (2008), p.922.

Google Scholar

[4] S. Bouazza, V. Alonzo and D. Hauchard: Synth. Met. Vol. 159 (2009), p.1612.

Google Scholar

[5] M.V. Fuke, P. Kanitkar, M. Kulkarni, B.B. Kale and R.C. Aiyer: Talanta Vol. 81 (2010), p.320.

Google Scholar

[6] S. Fujii, Y. Nishimura, A. Aichi, S. Matsuzawa, Y. Nakamura, K. Akamatsu and H. Nawafune: Synth. Met. Vol. 160 (2010), p.1433.

Google Scholar

[7] K. Gupta, P.C. Jana and A.K. Meikap: Synth. Met. Vol. 160 (2010), p.1566.

Google Scholar

[8] P. Paulraj, N. Janaki, S. Sandhya and K. Pandian: Colloids Surfaces A Vol. 377 (2011), p.28.

Google Scholar

[9] P. Bober, M. Trchova, J. Prokes, M. Varga and J. Stejskal: Electrochim. Acta Vol. 56 (2011), p.3580.

Google Scholar

[10] P. Bober, J. Stejskal, M. Trchova and J. Prokes: Polymer Vol. 52 (2011), p.5947.

Google Scholar

[11] R.C. Liu, H. Qiu, H. Li, H. Zong and C.Y. Fang: Synth. Met. Vol. 160 (2010), p.2404.

Google Scholar

[12] R.C. Liu, H. Qiu, H. Zong and C.Y. Fang: J. Nanomater. Vol. 2012 (2012), ID 674104.

Google Scholar

[13] P.N. Adams, P.J. Laughlin, A.P. Monkman and A.M. Kenwright: Polymer Vol. 37 (1996), p.3411.

Google Scholar

[14] M.E. Jozefowicz, R. Laversanne, H.H.S. Javadi, A.J. Epstein, J.P. Pouget, X. Tang and A.G. MacDiarmid: Phys. Rev. B Vol. 39 (1989), p.12958.

DOI: 10.1103/physrevb.39.12958

Google Scholar

[15] W. Yan, X.M. Feng, X.J. Chen, X.H. Li and J.J. Zhu: Bioelectrochemistry Vol. 72 (2008), p.21.

Google Scholar