Effect of Temperature on the Morphology and Optical Properties of ZnO Nanoparticles Prepared by Forced Condensation Method

Article Preview

Abstract:

Intensive and innovative research is focused on the preparation of various nanostructured materials especially nanostructured metal oxides as applicable to number of applications.The present work mainly emphasis a single step synthesis of ZnO nanoparticles by employing surfactant free forced condensation method. Surface morphology of the sample was precisely controlled by varying the calcination conditions. Investigation on the structure, surface and composition of ZnO nanoparticles is of both fundamental interest and technological importance. X-ray diffraction (XRD) analysis reviled that the ZnO nanoparticles exhibits crystalline with the preferential orientation along (1 0 0) plane. SEM image shows the nanoparticles are in the range of 75 to 150 nm with spherical shape. The room temperature PL spectra of ZnO particles exhibited strong ultraviolet photoluminescence around 380 nm at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-90

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. C.Yi, C.Wang, W. I. Park, ZnO nanorods: Synthesis, Characterization and applications, Semicond. Sci. Technol, 20 (2005) S22 - S34.

DOI: 10.1088/0268-1242/20/4/003

Google Scholar

[2] T. Gao, T.H Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas Sensor applications, Appl. Phys. A 80 (2005) 1451-1454.

DOI: 10.1007/s00339-004-3075-2

Google Scholar

[3] P. S. Kumar, J. Sundaramurthy, D. Mangalaraj, D. Rajarathnam, M.P. Srinivasan Synthesis and controlled growth of ZnOnanorods based hybrid device structure by aqueous chemical method, Adv Mat Res, 779 (2010) 123-125.

DOI: 10.4028/www.scientific.net/amr.123-125.779

Google Scholar

[4] P. S. Kumar, J. Sundaramurthy, D. Mangalaraj, D. Nataraj, D. Rajarathnam, M. P.Srinivasan, Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution – Immersion successive ionic layer adsorption and reaction process J. Colloid Interface Sci, 363 (2011) 51-58.

DOI: 10.1016/j.jcis.2011.07.015

Google Scholar

[5] H. Hu,K. Yu , J.Znu, Z, Zhu, ZnO nanostructures with different morphologies and their field emission properties, Appl Surf Sci, 24 (2006) 8410 - 8413.

DOI: 10.1016/j.apsusc.2005.11.060

Google Scholar

[6] J. B. Baxter, A. M. Walker, K. V. Ommering, E. S. Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology 17 (2006) S304 - S312.

DOI: 10.1088/0957-4484/17/11/s13

Google Scholar

[7] L. P. Schuler,M. M. Alkaisi,P. Miller,R. J. Reeves, UV sensing using surface acoustic wave device on DC sputtered ZnO monolayer, Microelectron Eng , 83 (2006) 1403 -1406.

DOI: 10.1016/j.mee.2006.01.172

Google Scholar

[8] T. Fukumura, H. T. oyosaki, Y. Yamada, Magnetic oxide semiconductors, Semicond. Sci. Technol, 20 (2005) S103 - S111.

DOI: 10.1088/0268-1242/20/4/012

Google Scholar

[9] A.Umar, B.Karunagaran,E.k Suh and Y B Hahn, Structural and optical properties of single crystalline ZnO nanorods grown on silicon by thermal evaporation, Nanotechnology 17(2006) 4072 - 4077.

DOI: 10.1088/0957-4484/17/16/013

Google Scholar

[10] T. Okada, B. H. Agung ,Y. Nakata, ZnO nanorods synthesized by nanoparticle assisted pulsed laser deposition, Appl. Phys. A 79,(2004) 1417-1419.

DOI: 10.1007/s00339-004-2797-5

Google Scholar

[11] W. Lee, M. C. Jeong, J. M. Myoung, Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal-organic chemical vapour deposition, Nanotechnology 15 (2004) 254 - 259.

DOI: 10.1088/0957-4484/15/3/003

Google Scholar

[12] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren , P. H.Fleming, Site- specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy, Appl.Phys. Lett. 81 (2002) 3046-3048.

DOI: 10.1063/1.1512829

Google Scholar

[13] L. Liao, D. H. Liu, J. C. Li, C. Liu, Q. Fu and M. S. Ye, Synthesis and Raman analysis of 1D- ZnO nanostructure via vapor phase growth, Appl Surf Sci, 240 (2005) 175 - 179.

DOI: 10.1016/j.apsusc.2004.06.053

Google Scholar

[14] W. I. Park, D. H. Kim, S. W. Jung, and Gyu-Chul Yi , Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl.Phys. Lett. 80 (2002) 4232-4234.

DOI: 10.1063/1.1482800

Google Scholar

[15] Y. Wang, M. Li, Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods, Mater. Lett,  60 (2006) 266 -269.

DOI: 10.1016/j.matlet.2005.08.028

Google Scholar

[16] P. S. Kumar, M. Yogeshwari, A. D. Raj, D. Mangalaraj, D. Nataraj, U. Pal, Synthesis of Vertical ZnO Nanorods on Glass Substrates by Simple Chemical Method, J Nano Res, 5 (2009) 223 - 230.

DOI: 10.4028/www.scientific.net/jnanor.5.223

Google Scholar

[17] J. Elias, R. Tena-Zaera and C. Lévy-Clément, Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: Role of buffer layer Thin Solid Films,  515(2007) 8553-8557.

DOI: 10.1016/j.tsf.2007.04.027

Google Scholar

[18] P. S. Kumar, S. M. Maniam, J. Sundararamurthy, J. Arokiaraj,D. Mangalaraj, D. Rajarathnam, M. P. Srinivasan and L K Jian, Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process, Mater. Chem. Phys., 133 (2012)126-134.

DOI: 10.1016/j.matchemphys.2011.12.076

Google Scholar

[19] Z. Yang, Q. H. Liu , L. yang , The effect of additional of citric acid on the morphologies of ZnO nanorods, Mater. Res. Bull, 42(2007) 221-227.

Google Scholar

[20] N. varghese, L.S. Panchakarla, M. Hanapi, A. Govindaraj, C.N.R. Rao, Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO, Mater. Res. Bull, 42(2007) 2117-2124.

DOI: 10.1016/j.materresbull.2007.01.017

Google Scholar

[21] W. Sang, Y. Fang, J. Fan, Y. He, J. Min, Y.Qian, Novel synthesis method of ZnO nanorods by ion complex transformed PVA-assisted nucleation, J. Cryst. Growth, 299 (2007) 272-276.

DOI: 10.1016/j.jcrysgro.2006.10.240

Google Scholar