[1]
Ramgir N S, Mulla I S and Pillai V K, Micropencils and microhexagonal cones of ZnO, J. Phys. Chem. B 110 (2006) 3995.
DOI: 10.1021/jp056629b
Google Scholar
[2]
S. Iijima, Single-shell carbon nanotubes of 1-nm diameter, Nature 56 (1991) 354.
Google Scholar
[3]
M.H. Kim, Y.H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays, Nano Lett. 4 (2004) 1059.
DOI: 10.1021/nl049615a
Google Scholar
[4]
Gorla, C.R.; Emanetoglu, N.W.; Liang, S.; Mayo, W.E.; Lu, Y.; Wraback, M.; Shen, H., Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (012) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys. 85 (1999).
DOI: 10.1063/1.369577
Google Scholar
[5]
Huang, M.H.; Mao, S.; Feick, H.; Yan, H.Q.; Wu, Y.Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P.D., Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292 (2001) 1897.
DOI: 10.1126/science.1060367
Google Scholar
[6]
Guo, L.; Ji, Y.L.; Xu, H. Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure, J. Am. Chem. Soc. 124 (2002) 14864.
DOI: 10.1021/ja027947g
Google Scholar
[7]
Park, W.I.; Yi, G.C.; Kim, M.; Penny cook, S. J., ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy, Ad . Mater. 14 (2002) 1841.
DOI: 10.1002/adma.200290015
Google Scholar
[8]
Tian, Z.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J. Biomimetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc. 124 (2002) 12954.
DOI: 10.1021/ja0279545
Google Scholar
[9]
Wang, Z.; Qian, X.; Yin, J.; Zhu, Z., Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route, Langmuir 20 (2004) 3441.
DOI: 10.1021/la036098n
Google Scholar
[10]
Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of Semiconducting Oxides, Science 291 (2001) (1947).
Google Scholar
[11]
Lao, J.Y.; Huang, J.Y.; Wang, D.Z.; Ren, Z.F., ZnO Nanobridges and Nanonails, Nano Lett. 3 (2003) 235.
DOI: 10.1021/nl025884u
Google Scholar
[12]
Kong, X.Y.; Wang, Z.L., Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett. 3 (2003) 1625.
DOI: 10.1021/nl034463p
Google Scholar
[13]
Yan, H.; He, R.; Johnson, J.; Law, M.; Saykally, R.J.; Yang, P., Dendritic nanowire ultraviolet laser array, J. Am. Chem. Soc. 125 (2003) 4728.
DOI: 10.1021/ja034327m
Google Scholar
[14]
] Djurisic , A.B.; Choy, W.C.H.; Roy, V.A.R.; Leung, Y.H.; Kwong, C.Y.; Cheah, K.W.; Rao, T.K.G.; Chan, W.K.; Liu, H.F.; Surya, C., Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Ad. Funct. Mater. 14 (2004) 856.
DOI: 10.1002/adfm.200305082
Google Scholar
[15]
Oleg Lupan, Lee Chowa, Guangyu Chai, Beatriz Roldan, Ahmed Naitabdi, Alfons Schulte, Helge Heinrich, Nano fabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing, Mater. Sci. Eng B 145 (2007).
DOI: 10.1016/j.mseb.2007.10.004
Google Scholar
[16]
Xiangdong Gao, Xiaomin Li, and Weidong Yu, Flower like ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc Ethylenediamine Complex, J. Phys. Chem. B 109 (2005) 1155-1161.
DOI: 10.1021/jp046267s
Google Scholar
[17]
Santi Maensiri, Chivalrat Masingboon, Vinich Promarak, Supapan Seraphin, Synthesis and optical properties of nanocrystalline V-doped ZnO powders, Optical Materials 29 (2007) 1700–1705.
DOI: 10.1016/j.optmat.2006.09.011
Google Scholar
[18]
H. Wei, Y. Wu, N. Lun, C. Hu, Hydrothermal synthesis and characterization of ZnO nanorods, Mater. Sci. Eng. A 80 (2005) 393.
Google Scholar
[19]
E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Electrical properties and non-stoichiometry in ZnO single crystals, Phys. Status Solidi A 66 (1981) 635.
DOI: 10.1002/pssa.2210660228
Google Scholar
[20]
S. C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chem. Phys. Lett. 363 (2002) 134.
DOI: 10.1016/s0009-2614(02)01145-4
Google Scholar
[21]
V. Stikant, D.R. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys. 83 (1998) 5447.
Google Scholar
[22]
Feng Xu, Yinong Lu, Yan Xie, Yunfei Liu, Synthesis and Photoluminescence of Assembly-Controlled ZnO Architectures by Aqueous Chemical Growth, J. Phys. Chem. C 113 (2009) 3.
DOI: 10.1021/jp808456r
Google Scholar
[23]
Haibo Zeng, Guotao Duan, Yue Li, Shikuan Yang, Xiaoxia Xu and Weiping Cai, Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls, Adv. Funct. Mater. 20 (2010) 561-572.
DOI: 10.1002/adfm.200901884
Google Scholar
[24]
Ghosh, M.; Raychaudhuri, A. K., Shape transition in ZnO nanostructures and its effect on blue-green photoluminescence, Nanotechnology 19 (2008) 445704.
DOI: 10.1088/0957-4484/19/44/445704
Google Scholar
[25]
Ali, A. M.; Emanuelsson, E. A. C.; Patterson, D. A., Photocatalysis with nanostructured zinc oxide thin films: The relationship between morphology and photocatalytic activity under oxygen limited and oxygen rich conditions and evidence for a Mars Van Krevelen mechanism, Appl. Catal., B 97 (2010).
DOI: 10.1016/j.apcatb.2010.03.037
Google Scholar
[26]
Pardeshi, S. K.; Patil, A. B., Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method, J. Mol. Catal. A: Chem. 308 (2009) 32.
DOI: 10.1016/j.molcata.2009.03.023
Google Scholar
[27]
Qamar, M.; Muneer, A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin, M. Desalination, 249 (2009) 535.
DOI: 10.1016/j.desal.2009.01.022
Google Scholar