Dual Thermo- and pH-Responsive Materials Based on Starch

Article Preview

Abstract:

A simple and direct method for preparation of thermo- and pH- responsive materials based on starch is presented. Introduction of 2-hydroxy-3-butoxypropyl as hydrophobic group into starch developed thermo-responsive material, and further introduction of hydrophilic carboxymethyl group could produce dual thermo- and pH-responsive materials. The LCST of these starch-based materials can be easily adjusted at desired temperature between 4.5 and 57.0°C by controlling the molar substitution of 2-hydroxy-3-butoxypropyl and carboxymethyl groups. Furthermore, the LCST of 2-hydroxy-3-butoxypropyl-carboxymethyl starch was also highly sensitive to pH.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-21

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Prabaharan, J. F. Mano: Macromol. Biosci. Vol. 6(2006), p.991.

Google Scholar

[2] S. Wan, M. Jiang and G. Z. Zhang: Macromolecules. Vol. 40(2007), p.5552.

Google Scholar

[3] J. L. Zhang, R. S . Srivastava and K. R. D. Misra: Langmuir. Vol. 23(2007), p.6342.

Google Scholar

[4] G. Fundueanu, M. Constantin and P. Ascenzi: Biomaterials. Vol. 29(2008), p.2767.

Google Scholar

[5] F. O. Onofre, Y. J. Wang: Int. J. Pharm. Vol. 385(2010), p.104.

Google Scholar

[6] M. J. Santander-Ortega, T. Stauner, B. Loretz, J. L. Ortega-Vinuesa, D. Bastos-González, G. Wenz, U. F. Schaefer and C. M. Lehr: J. Control. Release. Vol. 141(2010), p.85.

DOI: 10.1016/j.jconrel.2009.08.012

Google Scholar

[7] H. G. Breitinger: Biopolymers. Vol. 69(2003), p.301.

Google Scholar

[8] U. Funke, M. G. Lindhauer: Starch. Vol. 53(2001), p.547.

Google Scholar

[9] S. Richardson, L. Gorton: Anal. Chim. Acta. Vol. 497(2003), p.27.

Google Scholar

[10] L. Kaur, N. Singh and J. Singh: Carbohydr. Polym. Vol. 55(2004), p.211.

Google Scholar

[11] Z.F. Jia, H. Chen, X. Y. Zhu and D. Y. Yan, J. Am. Chem. Soc. Vol. 128(2006), p.8144.

Google Scholar

[12] O. V. Khutoryanskaya, Z. A. Mayeva, G. A. Mun and V. V. Khutoryanskiy: Biomacromolecules. Vol. 9(2008), p.3353.

Google Scholar

[13] Y. Ohya, M. Toyohara, M. Sasakawa, H. Arimura and T. Ouchi: Macromol. Biosci. Vol. 5(2005), p.273.

DOI: 10.1002/mabi.200400221

Google Scholar

[14] C. Clasen, W. -M. Kulicke, Prog. Polym. Sci. Vol. 26(2001), P. 1839.

Google Scholar

[15] R. Dicke, K. Rahn, V. Haack and Th. Heinze: Carbohydr. Polym. Vol. 45(2001), p.43.

Google Scholar

[16] H. B. Mao, C. M. Li, Y. J. Zhang, D. E . Bergbreiter and P. S. Cremer: J. Am. Chem. Soc. Vol. 125(2003), p.2850.

Google Scholar

[17] S. B. Lee, S. C . Song, J. I. Jin and Y. S. Sohn: J. Am. Chem. Soc. Vol. 122(2000), p.8315.

Google Scholar

[18] F. Meng, Z. Zhong and J. Feijen: Biomacromolecules. Vol. 10(2009), p.197.

Google Scholar

[19] X. C. Yin, H. D. H. Stöver: Macromolecules. Vol. 35(2002), p.10178.

Google Scholar