Phase-Controllable Synthesis of Nickel Phosphides Using a New Ligand Myristic Acid

Article Preview

Abstract:

Myristic acid was employed as a new ligand in a facile hydrothermal method to synthesize nanosized nickel phosphide particles with controlled phases at different temperatures. The phases of the as-obtained products were determined by X-ray powder diffraction (XRD) patterns. The morphologies of the products were characterized by transmission electron microscopy (TEM). Experiments indicated that pure Ni2P phase could be prepared at 160°C for 10h when nontoxic red phosphorus and nickel dichloride were used as starting materials in the presence of myristic acid. While pure Ni12P5 phase could be prepared by increasing the reaction temperature to 200°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-26

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Li, M. A. Malik and P. O. Brien, J. Am. Chem. Soc., Vol. 127 (2005), p.16020.

Google Scholar

[2] L. Sun, Y. Hao, C. L. Chien et. al., IBM J. Res. Dev., Vol. 49 (2005), P. 79.

Google Scholar

[3] P. S. Herle, B. Ellis, N. Coombs, and L. F. Nazar, Nat. Mater. Vol. 3(2004), p.147.

Google Scholar

[4] S. T. Oyama, P. Clark, X. Wang, et. al. J. Phys. Chem. B, Vol. 106(2002), p.1913.

Google Scholar

[5] S. F. Yang, C. H. Liang and R. Prins, J. Catal., 2006, 241, 465.

Google Scholar

[6] J. A. Cecilia, A. Molina, E. Castellon , J. Catal., Vol. 263(2009), p.4.

Google Scholar

[7] Z.L. Wu, F.X. Sun, W.C. Wu, Z.C. Feng, C.H. Liang, Z.B. Wei, C. Li, J. Catal. Vol. 222(2004), p.41.

Google Scholar

[8] Y.H. Ni, J. Li, L. Zhang, S. Yang, X.W. Wei, Mater. Res. Bull. (2008), Vol. 44(2008), p.1166.

Google Scholar

[9] C. Stinner, R. Prins, and T. Weber, J. Catal. Vol. 202(2001), p.187.

Google Scholar

[10] S. T. Oyama, J. Catal. Vol. 216(2003), p.343.

Google Scholar

[11] S. T. Oyama, X. Wang, Y. K. Lee and W. J. Chun, J. Catal., Vol. 221(2004), p.263.

Google Scholar

[12] X. Wang, P. Clark and S. T. Oyama, J. Catal., Vol. 208(2002), p.321.

Google Scholar

[15] C.A. McAuliffe, W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, (1979).

Google Scholar

[16] B. Arinsson, T. Landstrom, S. Rundquist, Borides, Silicides and Phosphides, Willey, New York, (1965).

Google Scholar

[17] C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang, J. Liu, J. Am. Chem. Soc. Vol. 126 (2004), p.1195.

Google Scholar

[18] J. Park, B. Koo, K.Y. Yoon, Y. Hwang, M. Kang, J. -G. Park, T. Hyeon, J. Am. Chem. Soc. Vol. 127 (2005), p.8433.

Google Scholar

[19] A.E. Henkes, R.E. Schaak, Chem. Mater. Vol. 19 (2007), p.4234.

Google Scholar

[20] J. Liu, X. Chen, M. Shao, C. An, W. Yu and Y. Qian, J. Cryst. Growth, Vol. 252 (2003), p.297.

Google Scholar

[21] Y. Ni, L. Jin and J. Hong, Nanoscale, Vol. 3(2011), p.196.

Google Scholar