Generation of Dense Lying Ga(As)Sb Quantum Dots for Efficient Quantum Dot Lasers

Article Preview

Abstract:

Two different approaches are pursued to realize densely packed gallium (arsenic) antimonide (Ga(As)Sb) quantum dots (QDs) for efficient QD lasers. In the first method nano¬structures are realized by self-organization using mask-less dry-etching. GaSb cone structures are achieved with a maximum density of 1.2 ∙ 1011 cm-2. During etching a 5 nm thick amor¬phous Ga layer is formed, also the surface oxidizes immediately under atmosphere, and as a consequence the dots are optoelectronically inactive, thus no photoluminescence (PL) can be achieved. Several attempts are made to revoke these effects, but the nanostructures stay inactive. In the second approach self-assembled optoelectronically active GaAsSb QDs are grown on GaAs in Stranski-Krastanov mode. With these QDs efficient lasers are grown, exemplarily with an emission wavelength around 900 nm. In pulsed mode a minimum thres¬hold current density of jth = 121.7 A/cm2 and a maximum in differential quantum effi¬ciency of ηd = 0.66 are measured at T = 130 K. The internal quantum efficiency is ηi = 0.76 with internal losses of αi = 4.86 cm-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-289

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. -Y. Lin, C. -C. Tseng, W. -H. Lin, S. -C. Mai, S. -Y. Wu, S. -H. Chen, and J. -I. Chyi, Appl. Phys. Lett. 96 (2010) 123503.

Google Scholar

[2] C. -C. Tseng, W. -H. Lin, S. -Y. Wu, S. -H. Chen, and S. -Y. Lin,J. Cryst. Growth 10(2010) 109.

Google Scholar

[3] W. -H. Lin, C. -C. Tseng, K. -P. Chao, S. -C. Mai, S. -Y. Kung, S. -Y. Wu, S. -Y. Lin, andM. -C. Wu, IEEE Phot. Tech. Lett. 23 (2011) 2.

Google Scholar

[4] J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, D. L. Huffaker, D. A. Bussian, H. Htoon, and V. Klimov, Appl. Phys. Lett. 90 (2007) 261115.

DOI: 10.1063/1.2752018

Google Scholar

[5] S. Facsko, T. Dekorsy, C. Trappe, and H. Kurz, Microelectron. Eng. 53 (2000) 1-4.

Google Scholar

[6] S. Facsko, T. Bobek, T. Dekorsy, and H. Kurz, App. Phys. Lett. 80 (2002) 1.

Google Scholar

[7] S. Facsko, T. Bobek, T. Dekorsy, and H. Kurz, Phys. Status Solidi (b) 224 (2001) 2.

Google Scholar

[8] S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science 285 (1999) 5433.

DOI: 10.1126/science.285.5433.1551

Google Scholar

[9] T. Bobek, S. Facsko, S. T. Dekorsy, and H. Kurz, Nuc. Instr. and Meth. B 178 (2001) 1-4.

Google Scholar

[10] M. Paniconi and K. R. Elder, Phys. Rev. E 56 (1997) 3.

Google Scholar

[11] R. H. W. Hoppe, W. G. Litvinov, and S. J. Linz, Journal of Nonlinear Phenomena in Complex Systems 6 (2003) 1.

Google Scholar

[12] S. Vogel and S. J. Linz, Phys. Rev. B 72 (2005) 035416.

Google Scholar

[13] S. Vogel and S. J. Linz, Phys. Rev. B 75 (2007) 085425.

Google Scholar

[14] K. Gradkowski, T. J. Ochalski, D. P. Williams, S. B. Healy, J. Tatebayashi, G. Balakrishnan, E. P. O'Reilly, G. Huyet, and D. L. Huffaker, Phys. Status Solidi (b) 246 (2008) 4.

DOI: 10.1002/pssb.200880630

Google Scholar

[15] T. Wang and A. Forchel, Appl. Phys. Lett. 73 (1998) 13.

Google Scholar

[16] T. Wang and A. Forchel, J. Appl. Phys. 86 (1999) 4.

Google Scholar

[17] F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, V. M. Ustinov, P. S. Kop'ev, and Z. I. Alferov, Phys. Rev. B 57 (1998) 8.

DOI: 10.1103/physrevb.57.4635

Google Scholar

[18] L. Müller-Kirsch, R. Heitz, U. W. Pohl, D. Bimberg, I. Haeusler, H. Kirmse, and W. Neumann, Appl. Phys. Lett. 79 (2001) 7.

DOI: 10.1063/1.1394715

Google Scholar

[19] J. Tatebayashi, B. L. Liang, R. B. Laghumavarapu, D. A. Bussian, H. Htoon, V. Klimov, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, Nanotechnology. 19 (2008) 295704.

DOI: 10.1088/0957-4484/19/29/295704

Google Scholar

[20] R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 90 (2007) 173125.

DOI: 10.1063/1.2734492

Google Scholar

[21] T. H. Loeber, D. Hoffmann, H. Fouckhardt, Beilstein Journal of Nanotechnology. 2 (2011)333-338.

Google Scholar

[22] T. H. Loeber, D. Hoffmann, H. Fouckhardt, Proc. SPIE Photonics West , San Francisco, USA, SPIE 7947 (2011) 79470N.

Google Scholar