Influence of Annealing Atmosphere on the Characteristics of Sol-Gel Derived ITO Thin Films

Article Preview

Abstract:

In this paper, the Indium Tin Oxide (ITO) thin films were prepared by a sol-gel dip coating method and then annealed at 600°C under different atmosphere (vacuum, N2 and 96.25%N2+3.75%H2). Their microstructure, optical and electrical properties were investigated and discussed. Suitable atmosphere can improve the crystalline of the ITO films, therefore the optical and electrical properties of the ITO films are improved. The uv-vis results showed the maximum of transmittance in the visible range (380-780 nm) of 85.6% and the lowest resistivity of 4.4×10-2 Ω-cm when the ITO films were annealed under 96.25% N2 with 3.75% H2 atmosphere.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-284

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. L. Chopra, S. Major and D. K. Pandya: Thin Solid Films Vol. 102 (1983) p.1.

Google Scholar

[2] I. Hamberg and C. G. Granqvist: J. Appl. Phys. Vol. 60 (1986) p. R123.

Google Scholar

[3] C. G. Granqvist: Appl. Phys. A Vol. 57 (1993) p.19.

Google Scholar

[4] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk: Thin Solid Films Vol. 326 (1998) p.72.

DOI: 10.1016/s0040-6090(98)00521-5

Google Scholar

[5] Y. Shigesato, D. C. Paine and T. E. Hayens: Jpn. J. Appl. Phys. Vol. 32 (1993) p. L1352.

Google Scholar

[6] J. F. Smith, A. J. Aronson, D. Chen and W. H. Class: Thin Solid Films Vol. 72 (1980) p.469.

Google Scholar

[7] J. C. Manifacier, L. Szepessy, J. F. Bress and M. Perotin: Mater. Res. Bull Vol. 14 (1979) p.163.

Google Scholar

[8] R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi: J. Appl. Phys Vol. 83 (1998) p.2139.

Google Scholar

[9] C. H. Han , S. D. Han, J. Gwak and S. P. Khatkar: Mater. Lett. Vol. 61 (2007) p.1701.

Google Scholar

[10] K. K. Li, G. H. Haertling and W. Y. Howng: Integr. Ferroelectr. Vol. 3 (1993) p.81.

Google Scholar

[11] S. C. Chang: Microelectron, J. Vol. 38 (2007) p.1220.

Google Scholar

[12] M. J. Alam and D. C. Cameron, Thin Solid Films Vol. 420-421 (2002) p.76.

Google Scholar

[13] B. L. Zhu, X. H. Sun and S. Guo: J. J. Appl. Phys. Vol. 45 (2006) p.7860.

Google Scholar

[14] Z. H. Li, Y. P. Ke and D. Y. Ren: Trans. Nonferrous. Met. Soc. China. Vol. 18 (2008) p.366.

Google Scholar

[15] E. Çetinörgü, S. Goldsmith and R.L. Boxman: Surf. Coat. Technol. Vol. 201 (2007) p.7266.

Google Scholar

[16] J. A. Thornton: Annu. Rev. Mater. Sci. Vol. 7 (1977) p.239.

Google Scholar

[17] Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang: Vacuum Vol. 75 (2004) p.183.

Google Scholar

[18] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk: Thin Solid Films Vol. 326 (1998) p.72.

DOI: 10.1016/s0040-6090(98)00521-5

Google Scholar

[19] K. L. Chopra, S. Major and D. R. Panya: Thin Solid Films Vol. 102 (1983) p.1.

Google Scholar

[20] R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide and Y. Sawada: Thin Solid Films Vol. 411 (2002) p.42.

DOI: 10.1016/s0040-6090(02)00171-2

Google Scholar

[21] S. Seki, Y. Sawada, M. Ogawa, M. Yamamoto, Y. Kagota, A. Shida and M. Ide: Surf. Coat. Technol. Vol. 169-170 (2003) p.525.

Google Scholar

[22] E. Nishimura and H. Ohkawa: Thin Solid Films Vol. 445 (2003) p.235.

Google Scholar

[23] A. Solieman and M. A. Aegerter: Thin Solid Films Vol. 502 (2006) p.205.

Google Scholar

[24] Z. H. Li, Y. P. Ke and D. Y. Ren: Trans. Nonferrous. Met. Soc. China. Vol. 18 (2008) p.366.

Google Scholar

[25] E. Celik, U. Aybarc, M. F. Ebeoglugil, I. Birlik and O. Culha: J. Sol-Gel Sci. Technol. Vol. 50 (2009) p.337.

DOI: 10.1007/s10971-009-1931-4

Google Scholar

[26] T. S. Renugadevi and S. Gayathri: Int. J. Pharm. Sci. Rev. Res. Vol. 2 (2010) p.106.

Google Scholar

[27] Z. H. Li, Y. P. Ke and D. Y. Ren, Trans: Nonferrous. Met. Soc. China. Vol. 18 (2008) p.366.

Google Scholar