Processing, Thermal Behavior and Tensile Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites

Article Preview

Abstract:

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on tensile properties and thermal behavior of the nanocomposites. Tensile results showed an increased in modulus, tensile strength and elongation at break. However, beyond 3phr of MMT the modulus of samples decreased because the MMT particles agglomerated. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-79

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yew G. H , Mohd Yusof A. M , Mohd Ishak Z. A , and Ishiaku U.S. (2005). Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites, Polymer Degradation and Stability, 488-500.

DOI: 10.1016/j.polymdegradstab.2005.04.006

Google Scholar

[2] Vašková I, Alexy P, Bugaj P, Anna Nahálková and Feranc J. (2008). Biodegradable polymer packaging materials based on polycaprolactone, starch and polyhydroxybutyrate, Acta Chemica Slovaca, 1: 301.

Google Scholar

[3] Cai J, Liu M, Wang L, Yao K, Li Sh, and Xiong H. (2011). Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites, Carbohydrate Polymers, 86: 941-947.

DOI: 10.1016/j.carbpol.2011.05.044

Google Scholar

[4] Lu DR, Xiao CM, and Xu SJ. (2009). Starch-based completely biodegradable polymer materials, eXPRESS Polymer Letters, 3: 366-375.

DOI: 10.3144/expresspolymlett.2009.46

Google Scholar

[5] Garlotta D . (2001). A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment, 9: 63.

Google Scholar

[6] Kim SH, Chin I, Yoon J, Kim SH, and Jung J. (1998). Mechanical properties of biodegradable blends of poly(L- lactic acid) and starch, Korea Polymer Journal, 6: 422-7.

Google Scholar

[7] Yeul Jang W, Young Shin B, Jin Lee T, and Narayan R. (2007). Thermal Properties and Morphology of Biodegradable PLA/Starch Compatibilized Blends, Journal of Industrial and Engineering Chemistry, 13: 457-464.

Google Scholar

[8] Aouada FA, Mattoso LHC, and Longo E. (2011). New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites, Industrial Crops and Products, 34: 1502-1508.

DOI: 10.1016/j.indcrop.2011.05.003

Google Scholar

[9] Xiaozhi T, Alavi S, and Thomas J.H. (2008). Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films, Creal Chem, 85-91.

Google Scholar

[10] Sudip R, Quek SY, Easteal A, and Dong Chen X. (2006). The Potential Use of Polymer-Clay Nanocomposites in Food Packaging, International Journal of Food Engineering, 1: 4.

DOI: 10.2202/1556-3758.1149

Google Scholar

[11] Arroyo, O. H., Huneault, M.A., Favis, B.D., and Bureau, M.N. (2010). Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites. Polymer composite, 31, 114-127.

DOI: 10.1002/pc.20774

Google Scholar

[12] Lee, H. J., Park, T. G., Park, H. S., Lee, D. S., Lee, Y. K., Yoon, S. C. and Nam, J. (2003). Thermal and mechanical characteristics of poly (l-lactic acid) nanocomposite scaffold. Biomaterials. 24: 2773–2778.

DOI: 10.1016/s0142-9612(03)00080-2

Google Scholar

[13] Balakrishnan, H., Hassan, A., Uzir Wahit, M., Yussuf, A. A., and Razak, B. A. (2010). Novel thoughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Journal of material and design, 31, 3289-3298.

DOI: 10.1016/j.matdes.2010.02.008

Google Scholar

[14] Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., Camino, G. (2009). Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94, 1646-1655.

DOI: 10.1016/j.polymdegradstab.2009.07.001

Google Scholar

[15] Pluta, M., Galeski, A., Alexandra, M., Paul, M. A., and Dubois, P. (2002).

Google Scholar

[16] Ray, S. S., Yamada, K., Okamotoa, M., and Ueda, K. (2003). New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer , 44, 857-866.

DOI: 10.1016/s0032-3861(02)00818-2

Google Scholar

[17] Siew-Yoong, L., Chen, H., and Hanna, M. (2008). Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Biological Systems Engineering , 1-14.

DOI: 10.1016/j.indcrop.2008.01.009

Google Scholar

[18] Liang, Z. M; Yin, J; Xu, H. J; Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers, Polymer, vol. 44, 1391-1399, (2003).

DOI: 10.1016/s0032-3861(02)00911-4

Google Scholar