[1]
Yew G. H , Mohd Yusof A. M , Mohd Ishak Z. A , and Ishiaku U.S. (2005). Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites, Polymer Degradation and Stability, 488-500.
DOI: 10.1016/j.polymdegradstab.2005.04.006
Google Scholar
[2]
Vašková I, Alexy P, Bugaj P, Anna Nahálková and Feranc J. (2008). Biodegradable polymer packaging materials based on polycaprolactone, starch and polyhydroxybutyrate, Acta Chemica Slovaca, 1: 301.
Google Scholar
[3]
Cai J, Liu M, Wang L, Yao K, Li Sh, and Xiong H. (2011). Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites, Carbohydrate Polymers, 86: 941-947.
DOI: 10.1016/j.carbpol.2011.05.044
Google Scholar
[4]
Lu DR, Xiao CM, and Xu SJ. (2009). Starch-based completely biodegradable polymer materials, eXPRESS Polymer Letters, 3: 366-375.
DOI: 10.3144/expresspolymlett.2009.46
Google Scholar
[5]
Garlotta D . (2001). A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment, 9: 63.
Google Scholar
[6]
Kim SH, Chin I, Yoon J, Kim SH, and Jung J. (1998). Mechanical properties of biodegradable blends of poly(L- lactic acid) and starch, Korea Polymer Journal, 6: 422-7.
Google Scholar
[7]
Yeul Jang W, Young Shin B, Jin Lee T, and Narayan R. (2007). Thermal Properties and Morphology of Biodegradable PLA/Starch Compatibilized Blends, Journal of Industrial and Engineering Chemistry, 13: 457-464.
Google Scholar
[8]
Aouada FA, Mattoso LHC, and Longo E. (2011). New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites, Industrial Crops and Products, 34: 1502-1508.
DOI: 10.1016/j.indcrop.2011.05.003
Google Scholar
[9]
Xiaozhi T, Alavi S, and Thomas J.H. (2008). Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films, Creal Chem, 85-91.
Google Scholar
[10]
Sudip R, Quek SY, Easteal A, and Dong Chen X. (2006). The Potential Use of Polymer-Clay Nanocomposites in Food Packaging, International Journal of Food Engineering, 1: 4.
DOI: 10.2202/1556-3758.1149
Google Scholar
[11]
Arroyo, O. H., Huneault, M.A., Favis, B.D., and Bureau, M.N. (2010). Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites. Polymer composite, 31, 114-127.
DOI: 10.1002/pc.20774
Google Scholar
[12]
Lee, H. J., Park, T. G., Park, H. S., Lee, D. S., Lee, Y. K., Yoon, S. C. and Nam, J. (2003). Thermal and mechanical characteristics of poly (l-lactic acid) nanocomposite scaffold. Biomaterials. 24: 2773–2778.
DOI: 10.1016/s0142-9612(03)00080-2
Google Scholar
[13]
Balakrishnan, H., Hassan, A., Uzir Wahit, M., Yussuf, A. A., and Razak, B. A. (2010). Novel thoughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Journal of material and design, 31, 3289-3298.
DOI: 10.1016/j.matdes.2010.02.008
Google Scholar
[14]
Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., Camino, G. (2009). Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94, 1646-1655.
DOI: 10.1016/j.polymdegradstab.2009.07.001
Google Scholar
[15]
Pluta, M., Galeski, A., Alexandra, M., Paul, M. A., and Dubois, P. (2002).
Google Scholar
[16]
Ray, S. S., Yamada, K., Okamotoa, M., and Ueda, K. (2003). New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer , 44, 857-866.
DOI: 10.1016/s0032-3861(02)00818-2
Google Scholar
[17]
Siew-Yoong, L., Chen, H., and Hanna, M. (2008). Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Biological Systems Engineering , 1-14.
DOI: 10.1016/j.indcrop.2008.01.009
Google Scholar
[18]
Liang, Z. M; Yin, J; Xu, H. J; Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers, Polymer, vol. 44, 1391-1399, (2003).
DOI: 10.1016/s0032-3861(02)00911-4
Google Scholar