Synthesis of a New Water-Soluble Conjugated Polymers Containing Thiazoline Moiety for Antibacterial Activity Bioassay

Article Preview

Abstract:

The water-soluble cationic polyfluorene derivatives PFP-N(Me)3+I- and PFP-T containing the thiazoline cycle on side chain was designed and synthesized. The preliminary bioassay was carried out for the thiazolines and polymers at different concentrations. The antibacterial activity of the polymers and thiazolines were determined with E.coli by growth inhibition assays. The results demonstrate that the polymer containing thiazoline cycle (PFP-T) has a higher inhibition ratio against E.coli than the thiazoline compound itself and the corresponding thiazoline quaternary ammonium.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1594-1598

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Pool, J. Pharm. Pharmacol. 2001, 53, 283.

Google Scholar

[2] H.Zhang, D.Wang, R. Butler, N. Campbel, J. Long, B. Tan, D. J. Duncalf, A.J. Foster, A.Hopkinson, D.Taylor, D.Angus, A. I. Cooper, S. P. Rannard, Nat. Nanotechnol. 2008, 3, 506.

DOI: 10.1038/nnano.2008.188

Google Scholar

[3] A. Panáček, L. Kvitek, R. Prucek, M. Kolář , M. Večeřová, N. Pizűrová, V.K. Sharma, T. Nevěčná, R. Zbořiİ, J. Phys. Chem. B 2006, 110, 16248.

DOI: 10.1021/jp063826h

Google Scholar

[4] N. Narband, M. Mubarak, D. Ready, I. P. Parkin, S.P. Nair, M.A. Green, A. Beeby, M.Wilson, Nanotechnology 2008, 19, 445102.

DOI: 10.1088/0957-4484/19/44/445102

Google Scholar

[5] S. Kang, M. Pinault, L. D. Pfefferle, M. Elimelech, Langmuir 2007, 23, 8670.

Google Scholar

[6] C. Parsons, C. P. McCoy, S. P. Gorman, D. S. Jones, S. E. J. Bell, C. Brady, S. M. Mc Glinchey, Biomaterials 2009, 30, 597.

Google Scholar

[7] T. Thorsteinsson, M. Masson, K.G. Kristinsson, M. A. Hjàlmarsdóttir, H. Hilmarsson, T. Loftsson, J. Med. Chem. 2003, 46, 4173.

Google Scholar

[8] J. Huang; H. Murata; R.R. Koepsel; A. J.Russell; K. Matyjaszewski, Biomacromolecules 2007, 8, 1396.

Google Scholar

[9] G. J.Gabriel, J.G. Pool; A. Som, J.M. Dabkowski, E.B. Coughlin; M. Muthukumar; G.N. Tew, Langmuir 2008, 24,12489.

DOI: 10.1021/la802232p

Google Scholar

[10] (a) R.Jansen, B. Kunze, H. Reichenbach, E. Jurkiewicz, G. Hunsmann, G. Höfle, Liebigs Ann. Chem. 1992, 357; (b) R. Jansen, D. Schomburg, G. Höfle, Liebigs Ann. Chem. 1993; 701.

DOI: 10.1002/jlac.199219920163

Google Scholar

[11] (a) J. D. White, T.S. Kim, M. Nambu, J. Am. Chem. Soc. 1995; 117: 5612; (b) P. Wipf, J.T. Reeves, R. Balachandran, B. W..Day, J. Med. Chem. 2002; 45: 1901.

Google Scholar

[12] G. Pattenden, J. P. Michael, Angew. Chem. Int. Ed. Engl. 1993; 32: 1.

Google Scholar

[13] (a) R.Caujolle, J. D.Favrot, P. R.Loiseau, M. Payard, H. Amarouch, H. Lazrek, M. D. Linas, J. P. Seguela, P. M. Loiseau, Pharm. Acta. Helv.1991; 66: 237; (b) B. George, E.P. Papadopoulos, J. Org. Chem. 1977; 42: 441.

DOI: 10.1002/chin.199222157

Google Scholar

[14] (a) G. MacLeod, J. Ames, J. Food Sci. 1987; 52: 42; (b) A. Adams, N. De Kimpe Chem. Rev. 2006; 106: 2299.

Google Scholar

[15] X.H. Lu, Q.Q. Qi, Y. M. Xiao, N, Li, B. Fu, Heterocycles 2009; 78, 1031.

Google Scholar

[16] M. Stork, B. S.Gaylord, A. J. Heeger, G. C. Bazan, Adv. Mater. 2002, 14, 361

Google Scholar

[17] R. S. Loewe, K. Y. Tomizaki, W. J. Youngblood, J. S.Lindsey J Mater Chem.2002;12:3438.

Google Scholar

[18] R. Molina, M.Ramos, F. Montilla, C. R. Mateo, R. Mallavia, Macromolecules, 2007, 40, 3042.

Google Scholar