Synthesis of UV-Writing Fluorinated Polymer for Organic Optical Waveguide

Article Preview

Abstract:

UV-Writing Poly(FPS-co-GMA) for optical waveguide was synthesized and the refractive index of the polymer film was tuned in the range of 1.460~1.555 at 1550 nm by mixing with bis-phenol-A epoxy resin. The film, which was made by spinning coated the Poly(FPS-co-GMA) with photo initiator, had good UV light lithograph sensitivity. The optical waveguides with very smooth top surface were fabricated from the resulting polymer by direct UV exposure and chemical development. The propagation losses of the channel waveguides were measured to be below 0.6 dB/cm at 1550 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1604-1608

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ma, A. K.-Y. Jen, L. R. Dalton: Adv Mater, 14 (2002), 1339.

Google Scholar

[2] H.-J. Lee, E.-M. Lee, M.-H. Lee, M.-C. Oh, J.-H. Ahn, S. G. Han, H.G. Kim: J. Polym. Sci., Part A: Polym Chem, 36 (1998), 2881.

Google Scholar

[3] R. Yoshimura, M. Hikita, S. Tomaru, S. Imamura: J. Lightwave Technol, 16 (1998), 1030.

Google Scholar

[4] T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto: Appl. Opt., 38 (1999), 966.

Google Scholar

[5] W. S. Choi, F. W. Harris: Polymer, 41 (2000), 6213.

Google Scholar

[6] H. Ma, S. Liu, J. D. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, A. K. –Y. Jen, L. R. Dalton: Adv. Funct. Mater., 12 (2002), 565.

DOI: 10.1002/1616-3028(20020916)12:9<565::aid-adfm565>3.0.co;2-8

Google Scholar

[7] T. Watanbe, N. Ooba, S. Hayashida, T. Kurihara, S. Imamura: J. Lightwave technol., 16 (1998), 1049.

Google Scholar

[8] Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, T. J. Marks: Appl. Phys. Lett., 77 (2000), 2961.

Google Scholar

[9] S. H. Kang, J. Luo, H. Ma, R. R.Barto, C. W. Frank, L. R. Dalton, A. K.-Y. Jen: Macromolecules, 36 (2003), 4355.

Google Scholar

[10] C. Badarau, Z. Y. Wang: Macromolecules, 37 (2004), 147.

Google Scholar

[11] E. J. Onah: Chem. Mater., 15 (2003), 4104.

Google Scholar

[12] C. Pitois, D. Wiesmann, M. Lindgren, A. Hult: Adv. Mater., 13 (2001), 1483.

Google Scholar

[13] J.-P. Kim, W.-Y. Lee, J.-W. Kang, S.-K. Kwon, J.-J. Kim, J.-S. Lee: Macromolecules, 34 (2001), 7817.

Google Scholar

[14] S. Wong, H. Ma, A. K. Y. Jen, R. Barto, C. W. Frank: Macromolecules, 36 (2003), 8001.

Google Scholar

[15] Y. Qi, J. Ding, M. Day: Chem. Mater., 17 (2005), 676.

Google Scholar

[16] A. Mochizuki, K. Mune, R. Naitou, T. Fukuoka, K. Tagawa: Journal of Photopolymer Science and Technology, 16 (2003), 243.

Google Scholar

[17] W. H. Wong, J. Zhou, E.Y.B. Pun: Appl. Phys. Lett., 78 (2001), 2110.

Google Scholar

[18] S. H. Kang, V. M. Prabhu, B. D. Vogt, E. K. Lin, W.-l. Wu, K. Turnquest: Polymer, 47 (2006), 6293.

Google Scholar

[19] R. Yang, S. A. Soper, W. Wang: Sensors and Actuators A,135 (2007),625.

Google Scholar

[20] L. E. Schmidt, S. Yi, Y.- H. Jin, Y. Leterrier, Y.-H. Cho, J.- A. E. Månson: J. Micromech. Microeng., 18 (2008),045022.

Google Scholar

[21] Z.- F. Zhou, Q.- A. Huang, W.- H. Li, M. Feng, W. Lu, Z. Zhu: J. Micromech. Microeng., 17 (2007), 2538.

Google Scholar

[22] X. Fei, N. Fu, Y. Wang, J. Hu, Z. C. Cui, D. M. Zhang, C. X. Ma, S. Y. Liu, B. Yang: Chem. J. Chinese. Universities, 27 (2006), 571

Google Scholar

[23] M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, H. Kozawaguchi: Appl Phys Lett (1993), 63, 1161.

DOI: 10.1063/1.109809

Google Scholar

[24] W. Wang, D. Chen, H. R. Fetterman: Appl. Phys. Lett., 65 (1994), 929.

Google Scholar

[25] Y. Shi, W. H. Steir, L. Yu, M. Chen, L. R. Dalton: Appl. Phys. Lett., 58 (1991), 1131.

Google Scholar

[26] J. R. Kulisch, H. Franke, R. Irmscher, C. J. Buchanl: Appl. Phys., 71 (1992), 3123.

Google Scholar