Numerical Simulation of Combined Mixing and Separating Flow in Cannel Filled with Porous Media

Article Preview

Abstract:

Various flow bifurcations are investigated for two dimensional combined mixing and separating geometry. These consist of two reversed channel flows interacting through a gap in the common separating wall filled with porous media of Newtonian fluids and other with unidirectional fluid flows. The Steady solutions are obtained through an unsteady finite element approach that employs a Taylor-Galerkin/pressure-correction scheme. The influence of increasing inertia on flow rates are all studied. Close agreement is attained with numerical data in the porous channels for Newtonian fluids. Keywords: mixing-separating geometry, flow bifurcation, porous media, finite element method, Newtonian fluid.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

639-647

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Cochrane, K. Walters, M. F. Webster, "On Newtonian and non- Newtonian flow in complex geometries", Philos. Trans. R. Soc. London, A301, 163-181, 1981.

Google Scholar

[2] S. Kakac, B. Kilkis, F. Arinic, "Convective Heat and Mass transfer in Porous media", Kulwer, Netherlands, 1991.

Google Scholar

[3] D. A. Nield, A. Bejan, "Convection in Porous Media", Springer–Verlag, New York, 1999.

Google Scholar

[4] B.Alazmi, K. Vafai, "Analysis of Fluid flow and heat transfer interfacial conditions between a porous medium and fluid layer", Int. J. Heat and Mass transfer, 44, 1735–1749, 2001.

DOI: 10.1016/s0017-9310(00)00217-9

Google Scholar

[5] A. Afonso, M. A. Alvis, R. J. Poole, P. J. Oliveira, and F. T. Pinho, "Viscoelastic low–Reynolds–Number flows in Mixing-Separating Cells", Civil–Comp Press, Stirlingshire, Scoland, 1–12, 2008.

DOI: 10.4203/ccp.89.98

Google Scholar

[6] K. Walters and M. F. Webster, "On dominating elasto-viscous response in some complex flows", Philos. Trans. R. Soc. London, A308, 199-218, 1982.

Google Scholar

[7] A. Baloch, P. Townsend, and M. F. Webster, "On the Simulation of Highly Elastic Complex Flows", J. non-Newtonian Fluid Mech., 59(23), 111–128, 1995.

DOI: 10.1016/0377-0257(95)01369-7

Google Scholar

[8] A. Baloch, P. Townsend, and M. F. Webster, "Extensional Effects through Circular Contraction with Abrupt and Rounded re–Entrant Corners", JNNFM, 1994.

DOI: 10.1016/0377-0257(94)80028-6

Google Scholar

[9] P. Townsend, and M. F. Webster, "An Algorithm for the Three-Dimensional Transient Simulation of non-Newtonian Fluid Flows", In: theory and Applications, Proc. of Numeta Conf., Num. Meth. Eng., NUMETA87, 2, T 12/1-11 Nijhoff. 1987.

DOI: 10.1007/978-94-009-3655-3_12

Google Scholar

[10] D. M. Hawken, H. R. Tamaddon-Jahromi, P. Townsend, and M. F. Webster, "A Taylor-Galerkin Based Algorithm for Viscous Incompressible Flow", Int. J. Num. Meth. Fluids, 10, 327–351, 1990.

DOI: 10.1002/fld.1650100307

Google Scholar

[11] E. O. A. Carew, P. Townsend and M. F. Webster, "A Taylor-Petro-Galerkin algorithm for viscoelastic flow", J. Non-Newtonian Fluid Mech., 50, 253–287, 1993.

DOI: 10.1016/0377-0257(93)80034-9

Google Scholar

[12] A. J. Chorin, "Numerical Solution of the Navier–Stokes Equations", Math. Comp., 22, 745-762, 1968.

DOI: 10.1090/s0025-5718-1968-0242392-2

Google Scholar

[13] C. Cuvelier, A. Segal, and A. A. Van Steenhoven, "Finite Element Methods and Navier-Stokes Equations", D. Reidol, Dordrecht, Holland, 1986.

DOI: 10.1007/978-94-010-9333-0

Google Scholar

[14] J. Donea, "A Taylor–Galerkin Method for Convective Transport Problems", Ins. J. Num. Meth. Eng., 20, 101-119, 1984.

DOI: 10.1002/nme.1620200108

Google Scholar

[15] D. M. Hawken, H. R. Tamaddon-Jahromi, P. Townsend, and M. F. Webster, "A Taylor-Galerkin Based Algorithm for Viscous Incompressible Flow", Int. J. Num. Meth. Fluids 10, 327-351, 1990.

DOI: 10.1002/fld.1650100307

Google Scholar

[16] C. Johson, "Numerical Solution of Partial Differential Equations by the Finite Element Method" John Wiley and Sons, New York, 1990.

Google Scholar

[17] G. Strang, and G. F. Fix, "An Analysis of the Finite Element Method", Englewood Cliffs N.J., Prence Hall, 1973.

Google Scholar

[18] H. R. Tamaddon-Jahromi, D. P. Ding, M. F. Webster and P. Townsend, A Taylor Galerkin Finite Element Method for non-Newtonian Flows", Int. J. Num. Meth. Eng., 34, 741-757, 1992.

DOI: 10.1002/nme.1620340304

Google Scholar

[19] J. Van Kan, "A Second-Order Accurate Pressure–Correction Scheme for Viscous Incompressible Flow", SIAM J. Sci. Stat. Comput.,7, 870, 1986.

DOI: 10.1137/0907059

Google Scholar

[20] P. Wapperom, M. F. Webster, "A second-order hybrid finite-element/volume method for viscoelastic flows", J. Non-Newtonian Fluid Mech., 79, 405, 1998.

DOI: 10.1016/s0377-0257(98)00124-4

Google Scholar

[21] V. G. Ramanathan, "Estimating pressure drop in two-Phase flow through porous media",1-4, 2009.

Google Scholar

[22] M. A. Al-Nimer, T. K. Aldos, "The effect of the macroscopic local inertial term on the non-Newtonian flow in channels filled with porous medium", International Journal of Heat and Mass Transfer, 47, 125-133, 2004.

DOI: 10.1016/s0017-9310(03)00382-x

Google Scholar

[23] N. Fietier, "Numerical simulations of viscoelastic fluid flows by spectral element methods and time-dependent algorithm", PhD Thesis, Lausanne, EPFL, 2002.

Google Scholar

[24] A. Baloch, "Numerical Simulation of complex flows of non-Newtonian fluids", PhD Thesis, University of Wales, Swansea, 1994.

Google Scholar

[25] S. Kakac, B. Kilkis, F. Arinic, "Convective Heat and Mass transfer in Porous media", Kulwer, Netherlands, 1991.

Google Scholar

[26] J. M. Marchal, M. J. Crochet, "A new mixed finite element for calculating viscoelastic flow", J. Non-Newtonian Fluid Mech., 26, 77-114, 1987.

DOI: 10.1016/0377-0257(87)85048-6

Google Scholar

[27] D. Rajagopalan, R.C, Armstrong, R. A. Brown, "Finite element method for calculation of steady viscoelastic flow using constitutive equation with a Newtonian viscosity", J. Non-Newtonian Fluid Mech., 36, 77-159, 192, 1990.

DOI: 10.1016/0377-0257(90)85008-m

Google Scholar

[28] D. Rajagopalan, R.C, Armstrong, R. A. Brown, "Calculation of steady viscoelastic flow using a multimode Maxwell model: application of the explicit momentum equation (EMME) formulation", J. Non-Newtonian Fluid Mech., 36, 135-157, 1990.

DOI: 10.1016/0377-0257(90)85007-l

Google Scholar

[29] Taha Sochi, "Modelling the flow of a Bautista-Manerofluid in porous media", Physics, fluid dynamics, 1-43, 2009.

Google Scholar

[30] Anderson, J. D. Jr, "Computational Fluid dynamics: the basics with applications", McGraw-Hill Book Co Ltd, 1995.

Google Scholar

[31] Jacob Bear, "Fluids in porous media", American Elsevier Publishing Company Inc., 1988.

Google Scholar