[1]
T. Cochrane, K. Walters, M. F. Webster, "On Newtonian and non- Newtonian flow in complex geometries", Philos. Trans. R. Soc. London, A301, 163-181, 1981.
Google Scholar
[2]
S. Kakac, B. Kilkis, F. Arinic, "Convective Heat and Mass transfer in Porous media", Kulwer, Netherlands, 1991.
Google Scholar
[3]
D. A. Nield, A. Bejan, "Convection in Porous Media", Springer–Verlag, New York, 1999.
Google Scholar
[4]
B.Alazmi, K. Vafai, "Analysis of Fluid flow and heat transfer interfacial conditions between a porous medium and fluid layer", Int. J. Heat and Mass transfer, 44, 1735–1749, 2001.
DOI: 10.1016/s0017-9310(00)00217-9
Google Scholar
[5]
A. Afonso, M. A. Alvis, R. J. Poole, P. J. Oliveira, and F. T. Pinho, "Viscoelastic low–Reynolds–Number flows in Mixing-Separating Cells", Civil–Comp Press, Stirlingshire, Scoland, 1–12, 2008.
DOI: 10.4203/ccp.89.98
Google Scholar
[6]
K. Walters and M. F. Webster, "On dominating elasto-viscous response in some complex flows", Philos. Trans. R. Soc. London, A308, 199-218, 1982.
Google Scholar
[7]
A. Baloch, P. Townsend, and M. F. Webster, "On the Simulation of Highly Elastic Complex Flows", J. non-Newtonian Fluid Mech., 59(23), 111–128, 1995.
DOI: 10.1016/0377-0257(95)01369-7
Google Scholar
[8]
A. Baloch, P. Townsend, and M. F. Webster, "Extensional Effects through Circular Contraction with Abrupt and Rounded re–Entrant Corners", JNNFM, 1994.
DOI: 10.1016/0377-0257(94)80028-6
Google Scholar
[9]
P. Townsend, and M. F. Webster, "An Algorithm for the Three-Dimensional Transient Simulation of non-Newtonian Fluid Flows", In: theory and Applications, Proc. of Numeta Conf., Num. Meth. Eng., NUMETA87, 2, T 12/1-11 Nijhoff. 1987.
DOI: 10.1007/978-94-009-3655-3_12
Google Scholar
[10]
D. M. Hawken, H. R. Tamaddon-Jahromi, P. Townsend, and M. F. Webster, "A Taylor-Galerkin Based Algorithm for Viscous Incompressible Flow", Int. J. Num. Meth. Fluids, 10, 327–351, 1990.
DOI: 10.1002/fld.1650100307
Google Scholar
[11]
E. O. A. Carew, P. Townsend and M. F. Webster, "A Taylor-Petro-Galerkin algorithm for viscoelastic flow", J. Non-Newtonian Fluid Mech., 50, 253–287, 1993.
DOI: 10.1016/0377-0257(93)80034-9
Google Scholar
[12]
A. J. Chorin, "Numerical Solution of the Navier–Stokes Equations", Math. Comp., 22, 745-762, 1968.
DOI: 10.1090/s0025-5718-1968-0242392-2
Google Scholar
[13]
C. Cuvelier, A. Segal, and A. A. Van Steenhoven, "Finite Element Methods and Navier-Stokes Equations", D. Reidol, Dordrecht, Holland, 1986.
DOI: 10.1007/978-94-010-9333-0
Google Scholar
[14]
J. Donea, "A Taylor–Galerkin Method for Convective Transport Problems", Ins. J. Num. Meth. Eng., 20, 101-119, 1984.
DOI: 10.1002/nme.1620200108
Google Scholar
[15]
D. M. Hawken, H. R. Tamaddon-Jahromi, P. Townsend, and M. F. Webster, "A Taylor-Galerkin Based Algorithm for Viscous Incompressible Flow", Int. J. Num. Meth. Fluids 10, 327-351, 1990.
DOI: 10.1002/fld.1650100307
Google Scholar
[16]
C. Johson, "Numerical Solution of Partial Differential Equations by the Finite Element Method" John Wiley and Sons, New York, 1990.
Google Scholar
[17]
G. Strang, and G. F. Fix, "An Analysis of the Finite Element Method", Englewood Cliffs N.J., Prence Hall, 1973.
Google Scholar
[18]
H. R. Tamaddon-Jahromi, D. P. Ding, M. F. Webster and P. Townsend, A Taylor Galerkin Finite Element Method for non-Newtonian Flows", Int. J. Num. Meth. Eng., 34, 741-757, 1992.
DOI: 10.1002/nme.1620340304
Google Scholar
[19]
J. Van Kan, "A Second-Order Accurate Pressure–Correction Scheme for Viscous Incompressible Flow", SIAM J. Sci. Stat. Comput.,7, 870, 1986.
DOI: 10.1137/0907059
Google Scholar
[20]
P. Wapperom, M. F. Webster, "A second-order hybrid finite-element/volume method for viscoelastic flows", J. Non-Newtonian Fluid Mech., 79, 405, 1998.
DOI: 10.1016/s0377-0257(98)00124-4
Google Scholar
[21]
V. G. Ramanathan, "Estimating pressure drop in two-Phase flow through porous media",1-4, 2009.
Google Scholar
[22]
M. A. Al-Nimer, T. K. Aldos, "The effect of the macroscopic local inertial term on the non-Newtonian flow in channels filled with porous medium", International Journal of Heat and Mass Transfer, 47, 125-133, 2004.
DOI: 10.1016/s0017-9310(03)00382-x
Google Scholar
[23]
N. Fietier, "Numerical simulations of viscoelastic fluid flows by spectral element methods and time-dependent algorithm", PhD Thesis, Lausanne, EPFL, 2002.
Google Scholar
[24]
A. Baloch, "Numerical Simulation of complex flows of non-Newtonian fluids", PhD Thesis, University of Wales, Swansea, 1994.
Google Scholar
[25]
S. Kakac, B. Kilkis, F. Arinic, "Convective Heat and Mass transfer in Porous media", Kulwer, Netherlands, 1991.
Google Scholar
[26]
J. M. Marchal, M. J. Crochet, "A new mixed finite element for calculating viscoelastic flow", J. Non-Newtonian Fluid Mech., 26, 77-114, 1987.
DOI: 10.1016/0377-0257(87)85048-6
Google Scholar
[27]
D. Rajagopalan, R.C, Armstrong, R. A. Brown, "Finite element method for calculation of steady viscoelastic flow using constitutive equation with a Newtonian viscosity", J. Non-Newtonian Fluid Mech., 36, 77-159, 192, 1990.
DOI: 10.1016/0377-0257(90)85008-m
Google Scholar
[28]
D. Rajagopalan, R.C, Armstrong, R. A. Brown, "Calculation of steady viscoelastic flow using a multimode Maxwell model: application of the explicit momentum equation (EMME) formulation", J. Non-Newtonian Fluid Mech., 36, 135-157, 1990.
DOI: 10.1016/0377-0257(90)85007-l
Google Scholar
[29]
Taha Sochi, "Modelling the flow of a Bautista-Manerofluid in porous media", Physics, fluid dynamics, 1-43, 2009.
Google Scholar
[30]
Anderson, J. D. Jr, "Computational Fluid dynamics: the basics with applications", McGraw-Hill Book Co Ltd, 1995.
Google Scholar
[31]
Jacob Bear, "Fluids in porous media", American Elsevier Publishing Company Inc., 1988.
Google Scholar