Characterization of Fluorinated Multi-Walled and Single-Walled Carbon Nanotubes Using High Resolution XPS and EDX

Article Preview

Abstract:

Pristine and fluorinated multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) were characterized using energy dispersive X-ray spectra (EDX) and X-ray photoelectron spectroscopy (XPS), respectively. The fluorine percentages of fluorinated multi-walled carbon nanotubes (F-MWCNTs) and fluorinated single-walled carbon nanotubes (F-SWCNTs) were 10.42% and 9.67% respectively by EDX. The absorption and de-absorption of fluorine properties were studied using high resolution C 1s and F 1s core level XPS and valence band spectra. The fluorine can be completely dissociated from F-MWCNTs, but partially dissociated from SWCNTs. There was 5.79% fluorine in atomic percent remaining associated with the F-SWCNTs when annealing the nanotubes to 500 °C measured by EDX. The results of F 1s core level XPS indicated that the binding energy of fluorine associated on SWCNTs was shifted from 687.0 eV to 688.3 eV after annealing the nanotubes to 500 °C. The results of valence band spectra showed that the binding energy of F 2p and F 2s shifted from 7.5 eV and 31.0 eV to 8.8 eV and 32.5 eV respectively in SWCNTS. However, the two peaks disappeared in annealed MWCNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature, 1991. 354: pp.56-58.

Google Scholar

[2] GAO Quan-yong, Z.J., YANGYong, Journal of Electrochemistry, 2005. 11(01): pp.87-91.

Google Scholar

[3] Nathan S. Lawrence, R.P.D., Joseph Wang, Electroanalysis, 2004. 17(1): pp.65-72.

Google Scholar

[4] Musameh, J.W.a.M., Analytica chimica acta, 2004. 511(1).

Google Scholar

[5] Joseph Wang, A.-N.K.a.M.M., Analyst, 2003. 128: pp.912-16.

Google Scholar

[6] E. Frackowiak, K.M., V. Bertagna, and F. Beguin, Appl. Phys. Lett., 2000. 77(15): pp.2421-3.

Google Scholar

[7] Jean-Marc Bonard, M.C., Christian Klinke, Ralph Kurt1, Olivier Noury, Nicolas Weiss, carbon, 2002. 40(10): pp.1715-28.

Google Scholar

[8] YS Anito, J Nanosci Nanotechnol., 2003. 3(1-2): pp.39-50.

Google Scholar

[9] Chaniotakis, S.S.N.A., Anal bioanal chem., 2003. 375: pp.103-05.

Google Scholar

[10] Wang, J., Electroanalysis, 2004. 2005(1): pp.7-14.

Google Scholar

[11] Ane Jensen, J.R.H., Jesper Nygård, Janusz Sadowski, Poul Erik Lindelof, Nano Letters, 2004. 4(2): pp.349-52.

Google Scholar

[12] Qing Cao, H.-s.K., Ninad Pimparkar, Jaydeep P. Kulkarni, Congjun Wang, Moonsub Shim, Kaushik Roy, Muhammad A. Alam & John A. Rogers, nature, 2008. 454: pp.495-500.

DOI: 10.1038/nature07110

Google Scholar

[13] E. Heister, V.N., T. Carmen, et al., Carbon, 2009. 47: pp.2152-2160

Google Scholar

[14] Jabr-Milane, L.S., et al., Cancer Treat Rev, 2008. 34(7): pp.592-602.

Google Scholar

[15] Dhar, S., et al., J Am Chem Soc, 2008. 130(34): pp.11467-76.

Google Scholar

[16] Zhuang L, S.X.M., Nakayama-Ratchford N., Dai H.J. , ACS Nano, 2007(1): pp.50-56.

Google Scholar

[17] Singh, R., et al., J Am Chem Soc, 2005. 127(12): pp.4388-96.

Google Scholar

[18] Kam, N.W. and H. Dai, J Am Chem Soc, 2005. 127(16): pp.6021-6.

Google Scholar

[19] Kam, N.W., et al., Proc Natl Acad Sci U S A, 2005. 102(33): pp.11600-5.

Google Scholar

[20] Peer, D., et al., Nat Nanotechnol, 2007. 2(12): pp.751-60.

Google Scholar

[21] Malhotra, R., et al., Anal Chem. 82(8): pp.3118-23.

Google Scholar

[22] Yu, X., et al., J Am Chem Soc, 2006. 128(34): pp.11199-205.

Google Scholar

[23] Jensen, G.C., et al., J Nanosci Nanotechnol, 2009. 9(1): pp.249-55.

Google Scholar

[24] Bhirde, A.A., et al., ACS Nano, 2009. 3(2): pp.307-16.

Google Scholar

[25] Sinha, N. and J.T. Yeow, IEEE Trans Nanobioscience, 2005. 4(2): pp.180-95.

Google Scholar

[26] Zhang, X., et al., Biomaterials, 2009. 30(30): pp.6041-7.

Google Scholar

[27] Chen, J., et al., J Am Chem Soc, 2008. 130(49): pp.16778-85.

Google Scholar

[28] Panyam, J. and V. Labhasetwar, Adv Drug Deliv Rev, 2003. 55(3): pp.329-47.

Google Scholar

[29] Kam, N.W., Z. Liu, and H. Dai, J Am Chem Soc, 2005. 127(36): pp.12492-3.

Google Scholar

[30] Liu, Z., et al., Angew Chem Int Ed Engl, 2007. 46(12): pp.2023-7.

Google Scholar

[31] Rusling, J.F., et al., Analyst. 135(10): pp.2496-511.

Google Scholar

[32] Bi, S., H. Zhou, and S. Zhang, Biosens Bioelectron, 2009. 24(10): pp.2961-6.

Google Scholar

[33] Lam, C.W., et al., Crit Rev Toxicol, 2006. 36(3): pp.189-217.

Google Scholar

[34] Firme, C.P., 3rd and P.R. Bandaru, Nanomedicine. 6(2): pp.245-56.

Google Scholar

[35] Zhang X, Zhang W.D., Liu L., Shen Z.X., 2003. Chem. Phys. Lett (372): pp.497-502.

Google Scholar