Corrosion Behavior of Construction Materials for Intermediate Temperature Steam Electrolysers

Article Preview

Abstract:

Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance was measured under simulated conditions (molten KH2PO4) corresponding to the proton-conducting solid acids or transition metal phosphates as electrolytes. It was shown that, unlike at temperatures below 200 °C, gold is unstable with respect to corrosion in molten KH2PO4. Platinum demonstrated high corrosion resistance and the anodic and cathodic limits were for the first time found for the electrolyte. Nickel, niobium, Inconel®625, Hastelloy®C-276 and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as construction materials for bipolar plates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

596-605

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Ulleberg, T. Nakken, A. Ete, International Journal of Hydrogen Energy, 35, 1841 (2010).

Google Scholar

[2] P. Millet and N. Mbemba and S.A. Grigoriev and V.N. Fateev and A. Aukauloo and C. Etiévant, International Journal of Hydrogen Energy, 36, 4134 (2011).

DOI: 10.1016/j.ijhydene.2010.06.105

Google Scholar

[3] A. Hermann, T. Chaudhuri, P. Spagnol, International Journal of Hydrogen Energy, 30, 1297 (2005).

Google Scholar

[4] D. Labou, E. Slavcheva, U. Schnakenberg, S. Neophytides, Journal of Power Sources, 185, 1073 (2008).

DOI: 10.1016/j.jpowsour.2008.08.013

Google Scholar

[5] Q. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum. Acid-doped polybenzimidazole (PBI) membranes for high temperature proton exchange membrane fuel cells. Progress in Polymer Science, 34, 449-477 (2009).

DOI: 10.1016/j.progpolymsci.2008.12.003

Google Scholar

[6] A.V. Nikiforov, I.M. Petrushina, E. Christensen, A.L. Tomas-Garcia, N.J. Bjerrum, International Journal of Hydrogen Energy, 36, 111 (2011).

Google Scholar

[7] A. V. Nikiforov, A. L. Tomas Garcia; I. M. Petrushina, E. Christensen, N. J. Bjerrum, International Journal of Hydrogen Energy, 36, 5797 (2011).

Google Scholar

[8] J. Polonsky, I.M. Petrushina, E. Christensen, K. Bouzek, C.B. Prag, J.E.T. Andersen, N.J. Bjerrum, International Journal of Hydrogen Energy, 37, 2173 (2012).

DOI: 10.1016/j.ijhydene.2011.11.035

Google Scholar

[9] T. Uda, S.M. Haile, Electrochemical and Solid-State Letters, 8, A245 (2005).

Google Scholar

[10] I.M. Petrushina, N.J. Bjerrum, R.W. Berg, and F.Cappeln, J. Electrochem. Soc., 144, 532 (1997).

Google Scholar

[11] N.J. Bjerrum, I.M. Petrushina, and R.W. Berg, J.Electrochem.Soc, 142, 1806 (1995).

Google Scholar

[12] "Handbook of Analytical Chemistry", L Meites, ed., McGraw Hill, NY (1963). Section 5.

Google Scholar