A Useful Synthetic Route to Yield Silver-Nanoparticles on Phyllosilicates and Morphologic Structural Investigations

Article Preview

Abstract:

Organofunctionalized phyllosilicates containing both amino and mercapto groups were synthesized and used as support for silver nanoparticles in situ deposition. Depending on silver concentration in relation to phyllosilicate different amount of nanoparticles size and distributions were obtained, even with smallest silver used causes strong exfoliation of the phylosilicate lamella. Also such condition favors nanoparticles formation with homogeneous distribution with smaller diameters and narrower particle particles size distributions. With highest silver amounts preferential external phyllosilicate surface crystallization is obtained, as given by particle diameters up to 30 nm. Scanning and transmission electron microscopies were successfully employed to characterize morphological and structural features for these synthesized materials, enabling atomic visualization for the silver nanoparticles. These new phyllosilicates containing silver nanoparticles are extensively employed to design inorganic light emission diodes and also in applying in biological fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

624-629

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser: Science. Vol. 287 (2000), p.1989.

Google Scholar

[2] J. P. Spatz, S. Mössmer, C. Hartmann, M. Möller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann and B. Kabius: Langmuir Vol. 16 (2000), p.407.

DOI: 10.1021/la990070n

Google Scholar

[3] W.R. Caseri: Mater. Sci. Tech. Vol. 22 (2006), p.807.

Google Scholar

[4] M.A. Busolo, P. Fernandez, M.J. Ocio and Jose M. Lagaron: Food Addit. Contam. A Vol. 27 (2010), p.1617.

Google Scholar

[5] T.V. Duncan: J. Coll. Interf. Sci. Vol. 363 (2011), p.1.

Google Scholar

[6] R. Dastjerdi and M. Montazer: Colloid. Surface. B Vol. 79 (2010), p.5.

Google Scholar

[7] H.-L. Su, C.-C. Chou, D.-J. Hung, S.-H. Lin, I-C. Pao, J.-H. Lin, F.-L. Huang, R.-X. Dong and J.-J. Lin: Biomaterials 30 (2009), p.5979.

DOI: 10.1016/j.biomaterials.2009.07.030

Google Scholar

[8] M. Valášková, M. Hundáková, K.M. Kutláková, J. Seidlerová, P. Čapková, E. Pazdziora, K. Matějová, M. Heřmánek, V. Klemm and D. Rafaja: Geochim. Cosmochim. Acta Vol. 74 (2010), p.6287.

DOI: 10.1016/j.gca.2010.08.025

Google Scholar

[9] H.-L. Su, S.-H. Lin, J.-C. Wei, I-C. Pao, S.-H. Chiao, C.-C. Huang, S.-Z. Lin and J.-J. Lin: Plos One Vol. 6 (2011), p. e21125.

DOI: 10.1371/journal.pone.0021125

Google Scholar

[10] S.G. Aspromonte, R.M. Serra, E.E. Miró and A.V. Boix: Appl. Catal. A Vol. 407 (2011), p.134.

Google Scholar

[11] C. Lui, Y. Li, J. Song, H.-S. Kim, E. Brueckner, B. Fang, K.-C. Hwang, Y. Huang, R.G. Nuzzo and J.A. Rogers: Proc. R. Soc. A Vol. 468 (2012), p.3215.

Google Scholar

[12] V.D. Lago, L.F. de Oliveira, K.A. Gonçalves, J. Kobarg and M.B. Cardoso: J. Mater. Chem. Vol. 21 (2011), p.12267.

Google Scholar

[13] B. Girase, D. Depan, J.S. Shah, W. Xu and R.D.K. Misra: Mater. Sci. Eng. C Vol. 31 (2011), 1759.

Google Scholar

[14] R. Patakfalvi, Z. Virányi and I. Dékány: Colloid Polym. Sci. Vol. 283 (2004), p.299.

Google Scholar

[15] R. Patakfalvi, A. Oszkó and I. Dékány: Colloid. Surface. A Vol. 220 (2003), p.45.

Google Scholar

[16] C.T.G.V.M.T. Pires, N.G. Oliveira Jr. and C. Airoldi: Mater. Chem. Phys. Vol. 135 (2012), p.870.

Google Scholar

[17] K.-H. Goh, T.-T. Lim and Z. Dong: Water Res. Vol. 42 (2008), p.1343.

Google Scholar

[18] C. Sanchez, G.J.A.A. Soler-Illia, F. Ribot, T. Lalot, C.R. Mayer and V. Cabuil: Chem. Mater. Vol. 13 (2001), p.3061.

DOI: 10.1021/cm011061e

Google Scholar

[19] A.S.O. Moscofian, C.T.G.V.M.T. Pires, A.P. Vieira and C. Airoldi: RSC Adv. Vol. 2 (2012), p.2502.

Google Scholar

[20] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whyman: J. Chem. Soc., Chem. Commun. (1994), p.801.

DOI: 10.1039/c39940000801

Google Scholar

[21] A. Corma, V. Fornes, S.B. Pergher, Th.L.M. Maesen and J.G. Buglass: Nature Vol. 396 (1998), p.353.

DOI: 10.1038/24592

Google Scholar

[22] J. Sun, D. Ma , H. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfänder and D. Su: J. Am. Chem. Soc. Vol. 128 (2006), p.15756.

DOI: 10.1021/ja064884j

Google Scholar

[23] A.L. Patterson: Phys. Rev. Vol. 56 (1939), p.978.

Google Scholar

[24] C.T.G.V.M.T. Pires, J.R. Costa and C. Airoldi: Micropor. Mesopor. Mater. Vol. 163 (2012), p.1.

Google Scholar

[25] R. Zamiria, A. Zakariaa, M.B. Ahmadb, A.R. Sadrolhosseinia, K. Shamelib, M. Darroudic and M.A. Mahdi: Optik Vol. 122 (2011), p.836.

Google Scholar