Advanced Materials Research
Vol. 705
Vol. 705
Advanced Materials Research
Vol. 704
Vol. 704
Advanced Materials Research
Vol. 703
Vol. 703
Advanced Materials Research
Vol. 702
Vol. 702
Advanced Materials Research
Vol. 701
Vol. 701
Advanced Materials Research
Vol. 700
Vol. 700
Advanced Materials Research
Vol. 699
Vol. 699
Advanced Materials Research
Vol. 698
Vol. 698
Advanced Materials Research
Vols. 694-697
Vols. 694-697
Advanced Materials Research
Vols. 690-693
Vols. 690-693
Advanced Materials Research
Vol. 689
Vol. 689
Advanced Materials Research
Vol. 688
Vol. 688
Advanced Materials Research
Vol. 687
Vol. 687
Advanced Materials Research Vol. 699
Paper Title Page
Abstract: The sensors of taste and odor play important roles of recognition as well as reception. In our research, the taste and odor sensing capabilities were based on the photoluminescence (PL) responses of luminescent metal-organic frameworks (MOFs). For the sensing of taste, [In(OH)(bdc)]n (bdc = 1,4-benzenedicarboxylate) and [Tb(btc)] (MOF-76, btc = benzene-1,3,5-tricarboxylate), were tested on aqueous solutions of five basic tastants such as sucrose (sweet), caffeine (bitter), citric acid (sour), sodium chloride (salty) and monosodium glutamate (umami). The photoluminescence (PL) responses of polyacrylic acid-chelated [In(OH)bdc]n and lanthanide Tb(btc) were used to demonstrate the applicability of MOF-based biomimetic tongue through: (1) identification of five tastes: sweet, bitter, sour, salty and umami, by 3-D PCA (principle component analysis) to distinguish the corresponding tastants, (2) quantification of the strength of five tastes determined by the relationships between the PL intensity and the τ scale of taste. For the sensing of odor, [In(OH)(bdc)]n and [Zn4O(bdc)3] (MOF-5) were exposed to the odorants such as cumin, cinnamon, vanillin, p-xylene, m-xylene, o-xylene, water, and ethanol. Similarly, the MOF-based biomimetic nose could distinguish the odors of the analytes based on a pattern recognition method (i.e., principal component analysis) constructed by the 2-D map of PL emission responses.
392
Abstract: The goal of the present study was to obtain a comprehensive knowledge about synthesis conditions, structure, thermal behavior and conductivity properties of neodymiumorthophosphates in order to analyzeof use this material in intermediate temperature fuel cells due to their thermal and chemical stability properties.The impedance spectroscopy technique (IS) was used to measure the conductivity. The conductivity of compositesobserved to be lower than conductivity of pure CsH2PO4 but had improvedsufficiently conductivity of pure NdPO4•nH2O.
398
Abstract: Zinc Oxide thin films have been deposited on glass substrates at different spin rate by sol-gel spin coating method. XRD measurement of the ZnO films confirms the Wurtzite hexagonal phase with the preferred orientation along the C-axis (002) plane. The other characteristic orientations (100) and (101) have also been observed. The average crystallite size evaluated from the XRD data lies between 5 nm and 20 nm. The crystallographic parameters viz., lattice constants, mean crystalline size, dislocation density, texture coefficient and standard deviation have been calculated from the XRD data. The estimated texture coefficient indicates the oriented overgrowth of (002) plane for the ZnO films spin coated up to the spin rate 3500 rpm. ZnO thinfilm spin coated at 4000 rpm and 3500 rpm shows maximum transmittance of 87.5% and 88.5 % respectively at 850 nm. The measured direct band gap energy of the ZnO films coated at different spin rates varies between 3 eV and 3.3 eV. The grain size observed from the microstructure of AFM is around 50 nm and this indicates the aggregation of nanosize cryatallites. The effect of spin rate on the structural, optical and surface properties of the spin coated ZnO thinfilms have been investigated and reported.
403
Abstract: The mechanical properties, such as hardness and elastic modulus, are determined by a work of indentation. The work of indentation method works well even though pile up is observed because of the use of the energy dissipated or work done during the indentation. In this work, nanoindentation tests are carried out for the anode layer of half-cell structure of solid oxide fuel cells(SOFCs), the typical mechanical properties are derived by the work of indentation.
409
Abstract: This paper investigates the linear stability of a thin axisymmetric pseudoplastic fluid with condensation effects flowing on a rotating circular disk. Long-wave perturbation analysis is proposed to derive a generalized kinematic model of the physical system with a small Reynolds number. The method of normal mode is applied to study the linear stability. The neutral stability curve and the linear growth rate are obtained subsequently as the by-products of linear solution. The study reveals that the rotation number generates a destabilizing effect in pseudoplastic fluid. The degree of the flow index n plays a vital role in stabilizing the film flow.
413
Abstract: In this research, the Y2O3 layer is doped with the zirconium through co-sputtering and rapid thermal annealing (RTA) at 550°C, 700°C, and 850°C. Then the Al electrode is deposited to generate two kinds of structures, Al/ZrN/ Y2O3/ Y2O3+Zr/p-Si and Al/ZrN/ Y2O3+Zr/ Y2O3/p-Si. According to the XRD results, when Zr was doped on the upper layer, the crystallization phenomenon was more significant than Zr was at the bottom layer, meaning that Zr may influence the diffusion of the oxygen. The AFM also shows that the surface roughness of Zr has worse performance. For the electrical property, the influence to overall leakage current is increased because the equivalent oxide thickness (EOT) is thinner.
422
Abstract: This paper establishes a model to predict the fatigue behavior of coiled tubing subjected to variable total strain conditions. The approach based on nonlinear fatigue cumulative damage rule of effective hysteresis energy dissipation, but requires additional experimental results from fatigue tests that were performed under constant strain amplitude. Cyclic plastic strain energy is measured curve area of cyclic stress-strain curves. it is proved to be quite consistent between theoretical predictions and experimentl datas.
426
Abstract: The penetration of ink into the paper affects the final appearance of printing and the amount of ink usage. The main aim of this experiment was to investigate the efficiency of coating speed on surface properties and ink penetration and to characterize the penetration depth through quantitative analysis by laser scanning confocal microscope (LSCM). The results indicated that the surface properties of coated paper could be adjusted and improved by increasing the coating speed. With the increasing of coating speed, ink penetration depth declined and ink penetration uniformity increased. It could be concluded that the coated paper with high coating speed compared with low coating speed resulted in lower ink usage and better printability on the condition of same print density.
432
Abstract: It is demonstrated that the strained-Si can enhance the channel stress with the contact etching stop layer (CESL) stressor. In addition to CESL, this article also includes ONO spacer and investigates the impact of ONO spacer thickness on the channel stress. It is found that the channel stress increases when the nitride thickness of the ONO spacer increases. On the other hand, the stress distribution is simulated and analyzed for the devices with or without CESL stressor. Generally speaking, based on the simulation results, the channel stress of MOSFET devices increases when the nitride stressor of ONO spacer and/or CESL increases.
436
Abstract: This research analyzes internal stress in the N-MOSFET. The research has two parts. First, we explore the effect of N-MOSFET channel stress when CESL layer is not utilized. The dimensional effect of spacer upon channel stress in N-MOSFET with variant width of ONO (oxide, nitride, oxide) is compared. Second, with stress applied to CESL and the spacer stressor, long/short channel effects are analyzed. It is demonstrated that when the thickness of CESL and the height of gate increase, the channel stress under the gate dielectric layer becomes tensile, and the performance is improved in the short channel, resulting in the improved performance in the whole N-MOSFET. Therefore, better device characteristics can be expected through the approach disclosed in this paper.
440